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ABSTRACT

\7 A Parabolic Equation (PE) workshop sponsored by the Surveillance
Environmental Acoustic Support (SEAS) Project and hosted by
NORDA's Numerical Modeling Division was held at NSTL from 31
March to 3 April 1981. The purpose of the workshop was to provide
a forum for those active in theoretical and applied PE develop-
ment and to compare computer results for a set of ocean acoustic
problems. Fifteen formal presentations were given, and thirteen
different PE models were exercised against four test cases. The
test cases raunged from one that any PE should be able to handle
to one that is a challenge Ior every PE. This repcrt describes
the results of that workshop and includes the theoretical bases
for the wmodels, the model descriptions, results of the test

cases, and abatracts of the formal presentatioas-'f:;“‘
\
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: NORDA PARABOLIC EQUATION WORKSHOP

I. INTRODUCTION

The advantages of the parabolic dpproximation (PA) to the elliptic wave
equation for use in ohtaining solutions to ocean acoustic problems were first made
known to the underwater acoustic sclentific community through an AESD workshop1 «
(sponsored by LRAPP) ou non-ray tracing techniques of acoustic propagation modeling
held in May 1973. That workshop concerned itgelf primarily with mode theory solu-
tions to a set of test cases for range~independent envirouments, but also included
the Parabolic Equation (PE) results of Hardin and Tappert2 for those same prob—
lems. As 18 now well known, the primary advantage of PE is its applicability to
ocean acoustic problems with range-dependent enviromments. See, for example,
Tappert3 for the origin and history of the development and application of PE to
various fields, especially the pioneering applications of Leontovich and Fock®.

A}

Since that AESD workshop in 1973 there has been a literal explosion of the
development and application of PE to solutions of underwatcer sound problems. No
attempt is made in this report to try to include what is now an extensive PE bib-
liography. Because of advances over the last several years in PE models for the
range-dependent environment problems in ocean acoustics, the Surveillance Environ-
mental Acoustic Support Project (SEAS, NORDA Code 520) sponsored a "PE Workshop"
hosted by NURDA's Numerical Modeling Division (OSTL Code 320). The workshop was
held at NSTL from 31 March to 3 April 198l1. Objectives of the workshop were to (a)
provide a forum for those presently active in theoretical and applied PE development
to exchange ideas, describe the PE programs, identify problems or deficiencies in
the PE approach, and to stimulate new ideas and approaches; (b) compare computer
results for a set of identicel ocean acoustic problems; and (c) collectively identi-
fy range dependent enviromment problems that could provide a set of benchmark test
cases. An antfcipated result of the workshop {s the identification of one (or
perhaps several) PE transamfssion loss model that could meet the needs of the SEAS
program. This supported version would be a "state-of-the-art" model derived from a
combination of the most promising features of existing PE models. The workshop was
a success 1ln terms of achleving objectives (a) and (b) above; however, objective (c)
was not achleved--there was little discussion of possible benchmark test cases. This
report describes the vesults of the workshop, hut does not {nclude recommendations
sade to SEAS as a coasequence of it.

The workshop was divided into two parts: half devoted to the test cases and
half devoted to presentatlons of new if develepr »ts. 1In the tesc prodblem portion a
brief description of each PE program exorcised agai-t he test cases was gilven and
the prelicted transmission loss present=d. Thirteen different PE models were exer-
cised against the test problems, with reference normal-mode calculations supplied by
the SACLANT ASW Research Centre. 1In the second haif of the workshop, fifteen half-
hour pcesentations on vecent PE research and {mplementations were given. Attendance
at the workshop was limfted to ifnvitees. The attende:s and their organizational
affiliations are given {n Table 1.

This report addresses {tself almust entirely to the test case portion of the
workshop {Sections II-IX). Although the new development portion occupled half uf
the workshop period, it was decided that a semi-detailed exposition of those presen-
tations was a major task and beyond the scope of this veport. Abstracts are, how-
ever, reproduced in Appendix A.




Table 1. Attendees and organizational affiliation

NAME ORGANIZATION

Dr. R. Baer Naval Research Laboratory

Mr. H. Brock Naval Research Laboratory

Dr. H. Bucker Naval Ocean Systems Center

Dr. R. Cavanagh Planning Systems Incorporated

Dr. S. Chin-Bing Naval Ocean Research and Development Activity
Dr. J. Davis Naval Ocean Research and Development Activity
Dr. L. Dozier Science Applications Incorporated 4
COR. K. Evans Naval Ocean Research and Development Activity
Dr. R. Evans Ocean Dat. Systems Incorporated

Dr. K. Gilbert Naval Ocean Research and Development Activity
Mr. D. Gordon Naval Ocean Systems Center

Dr. R. Greene Science Applications Incorporated

Dr. J. Hanna Science Applications Incorporated

Miss E. Yolmes Science Applications Incorporated

Dr. F. Jensgen SACLANT ASW Research Centre

Dr. D. Llee Naval Underwater Systems Center

Dr. L. Nghiem-Phu Daubin Systems Corporation

Dr. D. Palmer Ocean Acoustics Laboratory (NOAA/AOML)

Prof. J. Papadakis University of Rhode Island

Mr. R. Patton Bell Telephone Laboratories

Mr. N. Paz U. S. Naval Oceanographic Office

Mr. M. Pedersen Naval Ocean Systems Center

Mr. J. Perkins Naval Research lLaboratory

Mr. D. Seals Bell Telephone Laboratories

Mr. C. Spofford Science Applications Incorporated

Prof. F. Tappert University of Miami

Dr. D. Thomson Defence Reseatrch Establishment Pacific (Canada)
Mr. D. White Naval Ocean Research and Development Activity
Dr. ND. Wood Naval Undersea Systems Center

Dr. R. Uenkataraman Bell Telephone Laboratories




To assist in the interpretation of results from the various PE's that were
exercised against the test cases, theoretical bases are presented in Section II for
a generallzed PE, standard PE, small modifications to PE, a Cy~independent PE, and
higher-order corrections to PE. That section ends with a summary of the accuracy of
the various forms. Section IIT discusses numerical algorithms for solving PE, such
as split-step, finite difference, and finite element techniques. Included as well
are summaries of treatments of interface and boundary conditions and techniques for
obtaining the infitial field. Abstracts describing the PE's exercised agalnst the
test cases are given in Appendix B.

Given the groundwork that facilitates an understanding of the component parts
of each PE and allows proper perspective of their iaterrelationships, the test cases
and results are presented in Sections IV-IX. Section IV discusses the ratlionale for
the test problems and some "ground rules” for participants. The test cases them-
selves are aldressed in Sections V-VIII, and each section inciudes (1) description
of the case and what it was designed to test and (2) model results, analysis, and
summary. These sectlons, taken in turn, are as follows:

S2c¢ction V. Test Case 1 - Range Depeadent Surface Duct

Section VI. Test Case 2 - Bilinear Profile

Section VII. Test Case 3 - Range Independent Shallow Water Environment

Section VIII. Test Case 4 - Basin/Slope/Shelf Configuration for a
Geoacoustical Bottom.

|

A sumwmary of the workshop is given ia Section IX.

{I. FORMS OF THE PARABOLIC EQUATIONS

A. INTRODUCTION

Since there are a number of approximations to the Helmholtz Equation that lead
to what are commonly referred to as "Paraboiic Equations™ (PE's), it is important at
the stact to define and distinguish the various fomms presented at the workshop.
I'llowing Tappert's exposition presented at the start of the workshop and also
“:%moaee 1, we {ntroduce a genervalized PE (attributed to Claerbout 9 and called
' " here,; from which the various PE's can he systematically derived and which
gives a framework for identifying differences among them. See also McDaniel’ for
a discussion of splitting matrices and derivacions of parabolic approximations.

The trestuent here will be brief, but should help the tveader understand the
rzlationships among the various forms of PE. Such an overview thus facllitates
{aterpcetation of results from the PE models that were exercised against the test
aroblems.

In this section then we will derive a generalized PE and, in turn, derive stan-
dard PE, discuss small modificatlons to PE (CMOD and CPA), sutline the derivation of
a Co-(niependent PE, derive higher order correctlons to PE or "high angle™ PE's,
anl finally estimate the accuracy of the various forms.

B.  GENERAL PE (GPE)
We begin by deriving a generalized PE following Tappert3. The acoustic pres-

sure p(r,z) {n a cyltndrically symmetric med{um of constant density P having a har-
monic point source at (0,zg) satisfles the following equation:
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Pyy + (pr/r) + pzz + koznzp = ~-(4u/r) Ps 8(r)é(z - zg) s (1)

where r is the radial variable, z the depth, ky = w/Cy, w18 the angular fre-
quency, C, is some arbitrary reference sound speed, n(r,z) = C,/C(r,z) is the

index of refraction, and pg the source strength. Eq. 1 1s solved subject to
interface conditions of continuity of p and p'/p where p' is the normal derivative.
A presgure-release surface (p(r,0) = 0) and radiation boundary conditions as z and r
go to infinity are assumed.

Away from the source we introduce the function u(r,z) defined by
p=u/rt , (2)

and make the far-field approximation kor>>1l to obtain the Helmholtz far-rield
equation

Upy + Uy, + koznzu =0 . (3)

ODefining the operaturs
a

P =7 (4)
ani

Q= Gy - Ly + 020 (5)
we can then woite

(P2 + k2Q¥)u =0 . (6)

At this point we wish to “factor” the operators in Eq. 6. There are various factor-
f{zations (see Ref. 7 for example), but we will ugse that of Claerbout? and write
Eq. 6 as

(P + 1koQ) (P = 1koQu + iky[(P,Qlu =0 ,
where

[P,Qlu = PQu - QPu

fs the commutator of the operators P and Q. 1If the medium is range independent, ot
weakly range dependent, the commutator can be ignored and with the assumption of
only “outgolng” waves we artive at GPE:

Pu = 1koQu . (N




GPE, according to Tappert, is the most complete PE which 1is evolutionary in
range and neglects backscattering. For range-independent environments and only
outgoing waves 1t 18 exact within the limits of the far-field approximation. Tt
provides the basis for obtaining the various forms of “marching out” PE's, i.e.,
partial differential equatiocns in first order with respect to r (hence the name
"Parabolic”, as opposed to the Helmholtz Elliptic partial differential equation).
These forus will follow as a result of approximations to the pseudo-differential
opervator (, whoge properties preclude the solution of GPE itself.3 For later
couvenlence we also write Eq. 7 as

Pu= iko(1 + @)% (8)
with

Q= (1 +¢% ,

g=€e+u ,

e =n -1 s
and

1 32
H ko i 322

It is important, finally, to note that in a range-dependent environment GPE
(and approximations to it) has an intrinsic error, [P,QJu. Conditinns under which
the commutator is small have not been rlgorously defined, although Claerbout6,
Tappert3, and De Santol? provide frameworks within which to address the problem.
Until more is learned, users of PE's must be wary of cases In which refraction index
or boundary conditions are more than weakly range dependent.

G.  STANDARD PE (SPE)

Standard PE, which we will refer to as SPE, is that PZ reported by Hardin and
Tappert at the AESD workshOpZ. Although it 1s a first-order, small q approxima-
tion, SPE has the advantage of being particularly amenable to cfficient numerical
solution (viz., the Split-step algorithm discuss below). It is easily derived froam
Eq. 8 by making a Taylor scries expansion of Q

=1+ gD = 1+ (a/2) - (q2/8) + (q3/16) + -+ (9)
and retaining only the first two terms to obtain

Pu = 1ko(l + (a/2))u
The introduction of the envelope functlon

p(r,z) = u(r,z)exp(-ikyr) (10)
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leads to

Py = 1(kya/2)% (11)
or to SPE in a more familiar form

2ikg¥y + Vgzp + k2% - 1)y =0 (12)

SPE is thus derived from the Helmholtz far-field equation by assuming [P,QJu = 0,
neglecting backscatter, and neglecting q2 and higher order-terms in the expansion
of Q= VI +4q.

In the usual derivation of SPE the envelope function is introduced in Eq. 3 to
yield

P2y + 2ikoPy + ko2qy = 0 . (13)

The P2y term 1s then neglected by making the “parabolic™ approximation, i.e.,
assuming

[P2y| << |2ikoPy|

This approximation, which in a special sense assumes that ¥ {s a slowly varylng
function of r, 1s implied by the approximations listed above in obtaining SPE from
GPE. For SPE to be a good approximation to GPE (in the senss of some norm || * ||)
the neglected terms in the expansion of (1 + q)5 rast be small, i.e.,

lall? = [le +ull?

must be small compared to one.

Modal analysis by McDanield for a range-independent enviromment shows that
given the correct field at sowe range r,, the mode depth functions for SPE are
fdentical to those for the far-field Helmholtz equation. However, the phage at
vange r for the n-th mode depends on k, and is given by

((koz + kﬂz)/ZkO)(r - r0) 3

a3 opposed to kK (r - ry) for the far-field Helmholtz equatfon. The SPE phase can
also be written in terms of an equivalent angle 8, with respect to the horizon-
tal as

(k /2) (1 + cos?@ ) (r - )

*




vliere
kn = kocosan .

The ratio of the SPE mode function to the correct mode function for the n-th mode is
thevefore given by

Rgpe = exp(i2kos?(r - r5)) (14>

where

= {¢ 2
s = {sin(0,/2))* . (15)

Notice that the phase errar in Eq. 14 depends on the choice of k,. ™ne can
select k, such that the phase erro: 1s rcro for a sing’: rode, t.2., k, = Kk,
but not for all modes. If the modes are contained in a sufficiently small band
(1.2., the spectrum of the operator [k Q] is concentrated near ¥,), k, can be
selected to be in the center of the hand and the resulting phase errors and their
consequences on the field way be small. This so-called "narrow band"” case 1s usual-
ly interpreted as a "small aagle” restriction; the horizontal components of the true
vave aumbers k; = k,cos8, are confined to a small band about k,, and the
equivalent geometric rays are nearly horizontal (3, = 0). As noted here and by
Fltzgera1d9 and Brock, Buchal and Spoffotdlo the angles need not be small, but
rather limited to a small aperture so that k,cos®, is nearly constant. For a
wide band the phase errors can %e large with significant consequences on the fleld.

The next two "E forms dilscussed (CMOD and CPA) are intended to reduce phase
errors while retaining those features of SPS which allow for efficlent computer
solution.

D. CHOD

A modification to SPE that is designed to reduce thy asso-fated phage errars or
inprove the narrow band lf{attat{ons has been developed by Brock, Buchal and Spof-
fordlq. This modification, referred to as CMOD, {s not, insofar as we know, ecasily
derivable from GPE. SPE phase errors have been viewed as the result of errors ia
each mode's horizontal wave number (¥,), which csn be thought of as errors in aach
aode's phase velocity (w/ky). CMOB is based on the idea of constructiag a "pseudo
problena whose (SPE) phasec veloclities are equal to the elliptic phase velocities of
the corvesponding mcdes in the original ptoblea'ln. This {s accomplished hy util-
{zing the WKB approximation to fdentify a mapping of the =odal turninz point depths
te the original problem into the turning point depths of the size mode in the psaudo
proble=. Carried out exactly this produces a zero phase ervor, bhut the depth fune-
tions are then in ervor asway fron the zode turaing points. I the main contribution
to the fleld of any mode is at a depth in the vicinlty of {ts turning point, then
this will be a small evvror and will be Independent of range {a a vange-irdependent
envitonaent. Use of the WKB approxi=zation, however, does not reduce the phase error
to exactly zero; thorefore, there are sosall phase crrors as well as depth functison
errors.
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CMUD employs a frequency independent mapping; given by

(n,2) + (m,y) 2 ((2n - D)%, zn¥%) . (16)

With this mapping the form of the PE equation is unchanged, i.e., u(r,y) satisfies

2 2
iko[m + 14 12 a ]
2 2ko? 8y?

u (17)
or in terms of the envelope funrtion
2ik¥y + byy + Ko?@2 - Dy =0 (18)

which is the same form as SPE given by Eq. 12.

Aual ;s1s of phase and amplitude errors of SPE using CMOD is complicated even
for the range-independent environment case. See Peference 10 for details and cau-
tions regarding its use in problems having isovelocity regions.

E. CPA

Palmerl!l showed that, in a range-independent enviromment, an integral opera-
tor applied to parameterized solutions of SPE yielded a solution to the Helmholtz
equation. The SPE solution was, in fact, found to be the result of a stationary
phase approximation to the integral. An expansion about the stationary phase poiat
ylelds a relaticn of form

o(r,z) = {1 - (q/4) + (q2/8) + «+-
+ 1kor (=(q2/8) + o)

+ (1/12) (1kor) 2(q/2)* + ++lp(r,2) (19)

where ¢ 1s the SPE envelope and ¢ is the Helmholtz equatlon envelope. Note that the
first and fourth terms listed give

¢(r,z) ¥ (1 - i(korq?/8))u(r,z)

20
“ y + (ir/2ko)Vrr . (20)

DeSantol? used a similar, bet differeat, integral operator to relate ¢ and ¢ for a
general, range-dependent environment. Again, expansion about the stationary phase
point leads to a result much like Eq. 19, but includes the effects of range-depend-
eat n{r,z)., DeSanto, Perkius, «nd Bauv suggested using Eq. 20 to improve SPE, and
showed exauples of the improvement13. This modified solution 18 termed the Cor-
rected Parabolic Approximation, or CPA, and takes the form, at each range step,

b (r3 = w(r) + {a/2 )e (¥) (21)
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where ¥(r) 1s the SPE solution, A 1s the range step, and gfr(r) is a finite-
difference approximation to VY., which utilizes ¥(r-A), ¥{r), ¥(r+A). See Ref. 13
for details of the implementation.

CPA can be derived directly from GPE via the second-order expansion of Q:

Py = 1k ((a/2) - (a?/8))y , (22)

and the approximations:

U, = -(k 2q%/8)y, (23)
for qr o 0,
! - 2 .
lpc(r -+ A) o~ eik()((qlz) (q /8))A . w(r) , (24)

for q, q2, and ¢y small. Tappert emphasized at the workshop that this modifica-
tion is valid only for small q, in which case the corrvection is small anyway. A
phase error analysis below confirms snd quantifies this. He suggested that a more
useful (more accurate) solution to second order in q is obtained via Claerbout's
rational-linear method (s2e Subsection G).

Modal analysis of CPA for a range-independent environment leads to

Repa = (1 + v %exp 1(2kos?(r - 1o) - tan~ly) o (25)
where R Ls the ratio of the CPA mode fuanction to the Helmholtz mode function,
y = 2ko(r - 1) (s - s2)2 (26)

and as before s = sinz(en/Z). Thus, for the general case CPA contains an
anplitude and a phase error. Notice that the first term in the exponential is the
SPE phase error, Eq. 14, anl the second term is a modification to that phase etrror.,

For small s (small 8,, and only the lowest-ovder terns in amplitude and
phase), cha reduces to

Repa @ (L + 2ko2s™(r - r)@)exp(dbk s3(r - r ) . (27)

cpa
80

In this event CPA provides a more accurate phase than SPE at the expense of a small
anplitude ecror. Note, however, that when s is not small ({.e., the "wide band"
case) the error is not small. This is the case for any small q approximatica.
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F. C,~INDEPENDENT PE

As has been noted in Section C, SPE's accuracy depends on lle + p| | being
small. Tappert3 has chown howaver that it is possible to improve on SPE by either
(1) requiring ||e|| to be small but relaxing the condition on p and thereby allowing
wide beamwidths, or (2) requiring ||x|]| to be small but relaxing the conditior on e
and thereby allowing large variations in the index of refraction. Tappert uses
formal operator expansions for § that are linear in one of u or ¢ and valid to all
orders in the other. WHls result for small I}p]l is

1 nzl nzz 3 1 2a
Pu = 1 + — - .
u Ky [n 4k0 ( =) + ;E;Z = u (28)

This is Tappert's C,— or k,—independent PE equation. That it is k,-independent
is easily seen siuce k, aud n always appear in the combination k,n.

Modal solution of Eq. 28 for a range-independent enviromment, to compare with
the modal solution of the far-field Helmholtz equation, is complicated by the fact
that the depth functions are different, and we shall not attempt that analysis here.
If, however, the z derivative of n can be izgnored, then Eq. 28 reduces to SPE and
the c¢orvespouding SPE phass errors persist.

Tappert also derives a small ||e|| PE, but since it was not exercised against
the workshop test problems we refer the reader to Refereuce 3.

G.  RATIONAL LINEAR PE APPROXIMATION
In contrast to Tappert's small [|p|| or small ||e|| improvement over the linear
q vepresentation of the operator Q that results in SPE, there are higher order

approximations of Q that are correct to order qz. These are generally referred to
as "Rational Linear" approximations, and take the following form

Q= (l+q)=2%tha

c+dq (29)
To obtain SPE from this form, let a=1, b=1/2, c=1, and d=0. Claerbout5’6, who
apparently was the first to use a rational linear approximation for PE, has
suggested the values: a=1, b=3/4, c=1, and d=1/4, so that Q is approximated as
= 1+ (3q/4) 30
T W 30
Expansion of the denominator of Eq. 30 leads to
Q=1+ (q/2) - (q2/8) + (q3/32) + «++ , (31)

and comparison of Eq. 31 with the Taylor series expansion of Q given by Eq. 9 shows
that it is correct to ovder q2 and 1s therefore & higher-crder (also higher-



angle) approximation to Q than employed to obtain SPE. Use of Q given by Eq. 30 in
%23, 7 leads to the governing equation for u:

11 - (q/4))Pu = ik (1 + (3q/4))u . (32)

Notice that this is linear in q, i.e., a partial differential equation that is of
second order in the z derivative, whereas retention of the q2 tern in the Taylor
series rxpausion of Q given by Eq. 9 would result in an equation of fourth order in
the z derivative. If we introduce the envelope function ¥, Claerbout's rational
linea. approximation becomes

(a/6)y, + b, = ik a/2)v . (33)

If the first term in Eq. 33 is set equal to zero, the result is SPE, Eq. 12.

Claerbout's PE, Eq. 33, can be arrived at more directly from Eq. 13 by: (1)
initially neglecting the p v term, (2) applying P and solving for p2 ¢ , and
(3) bacl substitu .ug the P2 ¢ term in Eq. 13. This rationale is employad by
Thomson {(thls report) aad 18 given ia Ref . 6.

Greene (this reporc) has suggested another rational linear approximation to Q
glven by

Q = U:99986 + 0.79624q
1.0 + C.3095q '

(34)

where the numerical coefficients (a,h,c, and d) have been determined by minimizing
the maximum error of the phase of the propagating modes over a range of angles from
0 to 40°, f.e., kp/ky between 1.0 and 0.77. ‘totice that Greene's coefficients

in Eq. 34 are nearly the same as Claerbout's .n Eq. 30. Application of Greena's
aini-max technique for a range of angles other than 0-40° will of course alter the
numerical walues of a, b, ¢, and d.

Any ratlonal linear approximation (i.e. of form glven by Eq. 29) leads to the
followling envelaope function:

where

¢+ dn? -1) ,

[
[}

™
[

=1k, ((@ = ¢) + (b - d)(n2 - 1)) ,

d/k,%

-2
[}

n
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and
w=1(b = d)/ky .

Eq. 35 avolds the numerical specifics and introduces a convenient notation for a
later section of this report.

Note that the rational linear approximation, regardless of the choice of a,b,c,
and d, has the same mode depth functions as the far-field Helmholtz equation in a
range-independent environment (as would any order Taylor series expansion of Q), and
yet is second order in the z derivative In range-dependent enviromments (unlike a
higher-order Taylor series expansion of Q).

Modal analysis for a range-independent environment for Claerbout's PE, Eq. 33,
results {ia the error ratio:

Rep = exp(iZky(r - 15)s%/(1 - s + 82)) (36)

vhere again & = sin2(8/2) and k, = koco88,. Notice that the amplitude is correct
and that the phase error is of order g3 as s*+0, while the SPE error is of order
82 (Eg. 14). The error in Greene's approximation is of order 1 as s»0, but is
ccusistently "small" over the range of angles 0 < 6, < 40°.

H. SUMMARY OF PE FORMS AND ACCURACY

This section (I1) has endeavored to logically relate various PE forms to a gen-
eral PE, which in turn is closely related to the Heimholtz equation. GPE (in the
far-field approximation) is exact when the enviromment is range-independent and only
“one-way" propagation 1s present. If n, # O then errors are made. Tappert
glves a qualitative racking of those errors, and DeSantol2 implicitly estimates
ttem in relating SPE solutions to sclutions of tine Helmholtz equation, but rigorous
quantitative estimates remain to be derived. The error could be large whenever a PE
is used and must be kept in mind.

The next type of error is that incurred in making approximations to GPE. GP%
is not amenable to numerical solution; the operator (1 + q)1 2 is "non-local” and
cannot be represented by a finite sum of linear differential operators. The most
popular approximation to GPE to date has been "SPE", a small q expansion and, as we
discuss in Section IITI, its widespread use is a result of an efficient numerical
algorithm (Tappert and Hardin's split-step) for 1its solution.

Error estimates of SPE and other PE's have, to date, concentrated on modal
analysis for range-independent environments. Although such an approach ignores the
effect of envirommental range dependencies, it 18 useful in estimating local errors
and their cumulative effect. As outlined 1ia Section C, SPE has phase errors.
Because of this, a number of PE's have been developed to improve on SPE.

(1) CMOD - A physically intuitive correction to SPE whose quantitative

improvement over SPE 1s not easy to calculate, but which has been demonstrated in
gsome deep water ocean acoustic problemslo.

12
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(2) CPA - Error estimates here indicate an improvement over SPE for small
angle propagation. It has a demonstrated advantage for some realistic problemsl3.

(3) Tappert's Cy-Independent PE - An improvement over SPE, but not amenable
to error analysis. Tests have not been documented (other than presented here in the
test problem sections), and the method may have limited applicability since large
variation in the index of refraction (large ¢) 1s usually important for wide angle
propagation (large p).

(4) Rational Linear Approximation - Both the Claerbout and Greene approxi-
mations offer the potential for a significant improvement over SPE-~for "wide angle”
propagation. In modal terms, the correct depth functions are retained, while the
phase errors are significantly reduced for angles up to 40° or more.

III. METHOD OF SOLUTION

A. INTRODUCT LON

The primary numerical advantage of the parabolic approximation is that it
yields a first-order differential equation in the range variable (r), and can
therefore be solved by marching out in range from a given "initial" field. This
section is then devoted to a discussion of numerical methods--techniques for solving
a given PE form on a computer. In practice the solution is obtained by laying down
a numerical grid in depth z, solving for the field at the grid points, and advancing
in range to the next range increment. The two basic types of approaches are the
split~step algorithm and classical finite difference/finite element techniques. An
integral part of each approach is its treatment of interfaces/houndaries, approxima-
tions to the radiation conditions, and, of course, the initial field.

In this section we address Split-Step SPE (Part B), finite difference methods
for SPE (Part C), and a comparison of the two methods (Part D). Part E describes
approaches for high angle (rational linear) PE and finally Part F presents various
ways to obtain the initial field.

B. SPLIT STEP SPE

I'he split-step algorithm was historically the first technique employed in
solving SPE for underwater acoustic problems; it is therefore appropriate te start
with this approach. To facilitate comparisons among numerical solutions to SPE, we
first introduce the operators:

x = (ikgq/2) = A+ B (37)
with
L
4 2k, 322 (38)
and
B = (iko/2)(n?2 - 1) . (39)

13
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Write SPE, Eq. 11; as
¥o=xyp=(A+B)y , (40)

where the prime 1s understood to be the r derivative.

Now, given the value of ¥ at some range rp, i.e.,¥, = ¥(ry,2), the value
of ¥ at a new range r+A, l.e.,¥p4] = ¥(rp+4, z), can be approximated from Eq. 40
as

v =e +*y +E (41)

where X approximates the behavior of x over the Interval A, and where E is an error
term (equal to zero if ¥=x and x is r independent). The actual error depends, as we
shall see later, on how the exponential operator is split and on how x 1s approxi-
mated by X in a range-dependent environment.

The split-step algorithm usually takes one of two forms. The first approach,
originally proposed by Tappertz, 1s to split the exponential operator as follows:

e(A + B)A & gBA . oAA (42)

and exploit the Fourier trausform to calculate the two z derivatives inherent in
exp (AA). ¥,4+1 18 thus found by means of the algorithm

_isZA

-1 2k
wn+1 =eBAFT (e T° F(Up))

(43)

where F is the Fourler transform from z to s and F~l {s the inverse transfora from
8 to z. The second approach, later suggested by Tappertls, is to split the
exponential operator as

Ab
JAFBL 5 BT (44)

and solve for ¥,4; by the algorithm

s'2) s2A

-

= F-l{e bko F{eBAF“l(e AkoF(wn))}] .

(45)
wn-&-l

In etther case appropriate boundary conditions are required in order to numeri-
cally implement this approach. The physical conditions are that p=0, or ¥=0, at z=0
and ¥=0 as z—»w. Since one cannat nunerically deal with an infini{te transform, the
latter (radiation) bouniary condition must be approximatel. The usual approach!
fs to add an attenuating layer of thickness D to the physical depth H and set ¥=0

14
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at z=zpa,*H#D. The attenuating layer is modeled with a complex index of
refractioa of the fom

2 = n2(1 .
n4(z) = n°(d) + {a(z); H <z < Z2ax (46)

where «(z) 1s the assumed attenuation profile in the layer. The choice of D and « is
arbitrary only to the extent that no significant energy should return into the prob-
lem froam this "false" bottom. Usually D 1{s taken to be H/314, Leeo, 2., = 4H/3,

and a 18 exponentially increasing with depth. ~ith this approximation to the radia-
tion condition, the Fourier transforms in Eqs. 43 and 45 can be replaced by a dis-
crete FFT (in fact, by a fast sine transform since p=0 at 2=0 and z=z,.). The
advantages of the split-step FFT are that it 1is energy conserving, unconditionally
stable, and computationally efficient?. The disadvantages are that {t requires a
uniform z-grid, periodic boundary conditions and, as we shall see, small step-size
for large propagation angles (subject, of course, to the limits of SPE itself). In
order to handle realistic ocean acoustic problems rapid variations ("discontinui-
ties"”) in sound speed, attenuation and density must be taken into account. Sound
speed and attenuation are both included in the index of refraction, and the remedy
15 simple but costly: model discontinuities by a continuous change over a relative-
ly small depth interval and force a larger transform size for proper sampling in
depth.

Dengity variations or discontinuities are a gpecial problem. Tappert3 has
shown that if one introduces a new variable into Eq. 1

p = pp

and proceeds as la Section C with U=p rl/z, =i exp(-1k,t), the resulting
equation for ¥ is exactly of the form of SPE for ¢ (Eq. 11), except that n (which
can also contain absorption) is replaced by 2 vhere

1

42 = n? +
2k02

IR (9=3/2gp)

Large gradients or discontinufties in p can make ii deviate considerably from unity
(thus violating conditions for valldity of SPE). Tappert concludes that a “smearing
out”™ of such rapid or disceatinuous changes 18 necessary and suggests an analytic
form for such a smearing3. Quite apart from the particular analytic form, the end
result {x a largec transform stze and smaller range step.

C. FINITE DIFFERENCE FOR SPE

An alternative nunerical technique for solution of SPE s provided by finfte
difference techniques. A primary advantage of this approach is that {t {oes not
trequire & uniform 2 mesh and discoatinutties in sound speed and density can be more
accurately approximated without exorbitant increases in mesh points.

A standard finite difference approach, Crank-Nicholson, appliei to SP: (Eq. 11)
for constant z and r mesh has the following forn:

15




1, ntl n 1 ntl n+l  n+l n n n
=~ @ -, + —[( -2 + + -2y +
A TR Vo) ¥ o5t Wy Y, wZ-L) (wz+1 Y wz—l)]
ko2 n+l n+l n.n
+ 2 [(n? -1 + (n2 -1 =0 ,
> [(n )2 wl (n )2¢ﬂ

(47)

where £ is the z mesh index with interval 8, and n is the r-mesh index with interval
A. By rearranging Eq. 47 and introducing ¢ as the column vector whose components
ace the %'s, we obtain the matrix form

— n+l —n

V=gV, (48)

Since Cy, and CR are tridiagonal matrices (even for variable z and r mesh), Eq.
48 13 easily solved implicitly.

Crank-Nicholson is just one of many finite-difference schemes applicable to
SPE. Others offer differeat orders of accuracy, ease of implementation, and speed.
In any of these, attenuation can be incorporated by use of a complex index of
refraction. Rapid variations in sound speed and density are easily accommodated by
tie variable mesh (§) and the flexibility to satisfy the interface conditiouns, i.e.
continuity of pressure p and p'/p (p' is the normal derivative).

Radiation conditions as z-»= are typically handled as for split-step, i.c.,
with a false bottom. An exception to this is the use of impedance boundary
conditions by Papadakis (this report), given in terms of an integral along the
bottom interface

k
. 1—2-0-(nB2 - 1)(r - s)

PR <
A s A IL LA U
° o (49)
(o}

where 2g its the interface depth helow which there {s a half space with density

pgp and index of refraction ng. This technique avoids the introduction of a
non-physical subbottom layer and offers a possible savings through elinination of
ahout 25% of the mesh points and evaluating Eq. 49 instead.

D. SPLIT-STEP VS. FINITE DIFFERENCE FOR 5PE

In this section we will compare the range-step dependent and frequency
dependent ervors incurred in using the split~step algorithm and finite differencing
to solve SPE. Included {n the results are egtimates made by Brock!4, Buchal and
Tappertlﬁ, HcDaniei7, DiNapoll and Deavenport17, and Jensen and Krolla.

Assume that the value of ¢q = ¢(r“,z) is available at range r,. A power
series solution to SPE in the form of Eq. 40 is givea to third order fn A by

) 2 3
= [1 4+ x4 + (x' + x2)§ + (" 2w+ oxx' o+ x3)é IR

6 'nn M

vn+l
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where the prime indicates an r derivative and x, x' and x" are evaluated at S

Consider first the errors inherent in the exponential solution of SPZ defined
by Eq. 41, i.e., even if X=x, the solution 1s in error whenever x'$#0. If X 18 x
evaluated at r,, then an expansion of the exponential for small A leads tou the
local error (difference between the solution of Eq. 44 and Egq. «5):

2
Bx(rg)) = 5% 'y + 0%y, (51)

A
whereas 1f X 1s x evaluated at ry+5, the error is (to third order inm 4):

E(x(rp + %9) = %2 (x" - 2xx' + 2x'x)n¢n . (52)

Thus, errors of order A2 can be incurred even befure the exponential operator
exp (A+B) 1s split. These errors persist in what follows.

Now consider the split-step algorithm given by Eq. 42, If X is x evaluated at
r, the error is )

2
EhPGe(tm)) =5 (7 (48D b . (53)

This is of order a2 and depends on the range dependence of x (through n) and on
the commutator of A and B. Comparing Eqs. 51 and 53 we see that the splitting
introduces an additional error, involving [A,B]. Excluding boundary considerations

[4,Blug = -7(n2) 0 + 2(n2) (b)) gy (54)

The magnitude of [A,B] {8 therefore seen to depend on the z gradient of the index of
refraction and 1s independent of frequency. On the other haad

an?
— = B!

r i

aud 18 linear in frequency. The x'a2 error term can be removed by taking ¥ equal
to x evaluated at ry +‘% with the result

&

4 A2
BN (x(ry + 5 = Ay, (55)

This is to be compared with Eq. 52 where the operator wms not split.

Consider now the splitting given by Eq. 44 with X equal to x evaluated at r,.
The resulting error is

AgA \
2007 _ 82, (56)
Ess ("(rn)) fhknvn ’
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identical to Eq. 51 and an iImprovement over the previous splitting but still of
order A2, If on the other hand % is x evaluated at rn +-% the error becomes

AgA

B2, 2(x(x, +8)) = 80 (8 + 2(8'A - AB') + [,[A,B1] + 208, [A,811) 0, (57)

and is now of order A3. Notice that the term containing the commutators 1s explic-
itly linear in frequency as are other terms. Also notice that since A 18 not a func-
tion of r, Eq. 57 differs from Eq. 52 only in the commutator terms. These additional
error terms are a consequence of splitting the operator exp (xi).

Before proceeding further it is important to understand that the error in the
above formulations and those we will see later depend on the r dependence of n. If
n' 1s small the ervor will be small, and if n' is large the error will be large--
thereby requiring a small range step. Regardless of the size of n' one can always
choose A to make the local error as small as one likes. However, SPE (as well as
GPE) 1is based on the assumption that n' is small, i.e., [P,Q] » O. Thus, in a
problem where n' drives the range step-size error, SPE may be a poor approximation.

We next cousider the finite difference approaches. One scheme for solving Eq.
40 18 given by ‘

v b ¥ ¥
ntl - n _ X n+l + 'n (58)

A a 2

and results in an error

_ x'a? (59)

i.e., of order AZ, linear in frequency, and identical to Eqs. 51 and 56. However,
ugse of the Crank-Nicholson algorithm

Yol Vo _ ol wn+; + Xy (60)
A

results in an error given by
63 t t b 3
ECN = - YE (x" + 2x'x + xx7 + x )wn (61)

and is of order a3 and cubic (through x3) {n frequency.

We have scen that the accuracy of split-step or finite difference algorithms
depends o4 how the range dependence of x i{s approximated. For x siezply evaluated at
range steps, the best that one can do is order Az, whereas a linear approximation
for x between range points allowr order a}. Therefore, in suamary, in a range-
dependent environment with x linearly approximated between range points: (1) the
splitting originally proposed by Tappert (Eq. 42), has a local error (Eq. 55) of
order al independent of frequency; (2) the later splitting (Eq. 44) has a local
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error (Eq. 57) of order A3 and lirear in frequency; and (3) standard Crank-
Nicholson {Eq. 60) has a local error (Eq. 6l1) of order a3 and cubic in frequency.
See References 7, l4, 16, 17, and 18 for more in-depth analyses.

Range-step~size predictors are obviously important for practical implementation
of any technique, and we refer the reader to References 14 and 19 for discussion of
some of the techniques that are utilized.

The advantage of split-step over Crank-Nicholson is that it is more efficient
at higher frequencies (linear vs. cubic) permitting a larger range step slze. Its
disadvantage 1s that a uniform z-grid 1is required, and in situations lavolving rapi”
varfations in depth of, for example, sound speed, a large transform size is required
(small z-mesh interval). The finite difference technique, on the other hand, does
not require a uniform grid, allowing for the flexibility of a judicious choice of
mesh points and consequent reduction in mesh polints.

E. HIGH ANGLE PE

1. General

The rational linear approximation of Section G is not appropriate for
solution by the split-step approach because of the variable coefficlents. The
techniques employed in the programs presented at the workshop all used standard
integration in r, but employed special representations in z as follows: Greene used
cubic splines to represent the z-dependence for his rational linear approximationn,
whereas Thomson used central differences and Gilbert used finite elements for the
discrete z-representation of Claerbout's rational linear approximation. Error
analysis in range is, in general, the same as for SPE except that the x operator
must be appropriately redefined. While we do present the various discrete
techniques for representing the z-dependent part of the rational linear approxi-
mation we do not include a corresponding error anaiysis. Such an analysis is beyond
the scope of this report.

2. Cubic Splines

Integration over r of Greene's Rational Linear Approximation, Eq. 35, using
the trapezoldal rule on the right hand side and neglecting the r dependence of the
index of refraction leads to

A8, n n+l fw ool 8.n .1
R R N O R TR L O DL E (52)

where superscripts n and n+l refer to v=r, and rg4;, respectively,
In arder to treat the 2z dependence, the following spline {nterpolstion

fanctlion can be {ntroduced for v:

N P V*(l,ézig(i*3-ir)+s: A I (63)
By ‘4

S i AR S
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where

T T
(64)

v=(z - zl)/éz ,

\.; = 1 -V [y
and where ¥y 1s the evaluation of ¥ at z=z). The g, are parameters to be deter-
mined. 1In this formulation ¥ and ¥,, are continuous, and the conditions on ¥at
the boundaries z=z) and z=z; require gy=g,=0. With continuity conditions
for ¥ and p~! ¢z, Eq. 63 ylelds a set of linear equations in ¢h and 8 which can
be written in matrix notation as

Mg =NV . (55)
Here M and N are tridiagonal and g and ¥ are column vectors consisting of the 8;
and ¢,

Now, use of the Interpolation function of Eq. 3 in Eq. A2 leads to an
equation of the form

n.n+l =0+l _ ,n_n - 7n
ALY Y bR Agv T+ gt (66)

where A; and AQ are diagonal matrices and b and by are constants.
Finally, multiplying Eq. 66 by M and using Eq. 65 to eliminate MZ we arrive at the
laplicit forwm

n—n+l n—n
CL' b4 CR' . (6?)

This equation can be solved nuaerically in an efficient msaaner since CE and

are tridiagonal. Note that this formulation assures p =p{z), and results ia
Y22 belng coatinunus when fn fact {t shousld be discontinuous for discontinuous p
or index of refracrirn. However. this condition can be remedied .ith a slight
modification to the above procedure and still retain the tridiagonality.

3. Heterogeneous Approximation

Thotson solves Claerbout's rational linear approximazion {n the farp
appropriate for depth-dependent densfty. This form can be derived from the
Helmholtz equatfon directly or by first deriving GP¥ for vartable density aad then
{ntroducing the appropriate expansfon siaflar to that used in Sectian I1-7. Without
reproducing the derivation here, ve simply state the result that GPE for p= p(z) is
{{entical to that lven by Fq. R except that q is relefined as § where

(58)

L
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Likewise, the Claarbout approximatinn to GPE for this same case {3 {dentical to Eq.
32 except that again q is replaced by 4. Introduction of the envelope function ¥
then leals to Claerbout's rational linear approximation for wvarlable density:

9y = iko gz
I+Py =523y . (69)

Integration of Eq. 69 over an interval rq.4 ~r,, assuming constant coefficlents
over the interval, leads to

- o+l on L n+l
1+ HE—m b ot (70)

Standard central differencing in z is next employed to evaluate all but the p depen-
dect part of §. To evaluate this Thomson uses the "heterogeneous approximation"20

(v - v
3 13 L+ 2
¢ — = + : —_——
a2 o 52" (o) (1 pa/px+1) v
(‘V - ';‘l. ) P
. i n,-’\ 7
+ 0D+ o, ) =2 (7)
x L-l 62

As in the spline formsulation, the result is a tridiagonal system of egquations that
is easily solved numerically. This formulation, lLowever, does model density discon-
tinuities although the discoantinuities {a n are aot exnlicitly treated.

4. Finite Elements

Gtlhert solves Claerbout's rational linear approximation for variahble den-
sity p(z) using the =method of finite elenents. The discretized equations in r and 2z
wore actually derived by using a variational technique to ainimi{ze the appropriate
Lagrangian density. UHowever, for simplicity, we will present a differeal but equiv-
aleat derivation here.

We start with Claerbout's rational linear approximation for varlable den-
sity o(2) (Eq. 70). The z-dependence is now treated by the following iaterpolation
function:

wiz) = ¥ Cyegea) (12)
whuere

P Cau v Copops Condom Gopy ¥ gy V2 00T e M) (73)

In this expression the @y are cubic polynoaials within ant zera outside a z-prid
{ntarval, end the ?r and v, are v and p‘l¢ at the z-grid points.
: z

Insert{on of the representation for ¥ given by &q. 72 iato Eq. 70, =multi-
plicarion by p‘1¢’, and integration aver 2z l2.ds to a linear system of
equations that can be expressed in natrix forma as

(% -k ARMFETH e e e gk aNTVIT €74)
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where M and N are block tridiagonal with 2x? blocks, and C is the column vector of
Cj's. This system of equations can oe solved numerically in an efficient manner,
but at a slower rate (for the same z—mesh) than the tridiagonal systems of Greene
and Thomson. However, discontinuities ia both p and n are treated explicitly and
can be input as arbitrary functions of z. This method need not use cubic polynom-
ials for ¢;, and can be easily generalized. In {z2ct, for linear ¢; the result

13 sssantially equivalent to using second order differences for ¥ and leads to a
tridlagonal system.

F. INITIAL CONDITIONS AND WAVENUMBER FILTERS

As statad pefore, the principal advantage of PE over elliptic equation
approaches is that PE allows numerical solutions which march out in range from an
initial field. UYowever, because of the sensitivity of the solutions to these init-
1al data and rhe finherent far-fizld nature of the PE approximations, careful spec-
ification of the depth depeudence of the field at starting range r, is required.

Both initially and down range it is advantageous (and sometimes necessary) to
limit the size of the vertical wavenumbers or angles of propagating energy. The
choice of limit depends on: the particular version of PE (regions of validity of
small angle 5PE, high angle PE, etc.), the boundary conditions (especially att=nua-
tion of hiyu angle encry, by the hottom), computational constraints (depth-mesh
epaciag and range step decrease as angular aperture increases), and application
{e.g., study of narrow bean vertical arrays).

for a range-independent enviromment tie exact initial fleld can be obtained by
a noraal mode solution. In a range-dependent enviroument, especlally for sources
near bottom slopes, it 1{s a0c¢ pracrcical to obtain the exact initial fileld, and only a
aunher of approximate approaches are available. One is to obtain the fleld from a
t1y theory calculation, but this teclunlque nas its disadvantages and was not used by
any of the PE's exerclsed at the workshop. The techniques that were used fell into
twn categories: (1) normal modes and (2) pciat-source simulations, each of which
can be "filtered” to limit vertical wavenumbers. These approaches, as exercised by
wodels for the workshop test cases, are discussed {n order below.

The normal mode startup ls stralghtforward. Under the assumption that the
ocean {s stratifi{ed near the source, the normal mode sovlution, v(rgy,z), to the
elliptic wave equation for the {nitial enviromment {s calculated, and related to the
fritlai PE fleld y(r,,z) by:

'J(r()'z) = rOL" V(ru'z)e"ikoro . (75)

The value of ry {s arhitrary but {5 usually on the order of several wavelengths.
Such a4 starter can of course he used at ary range, and has the advantage of being
ezact, {n @ range-inlepeadent context. Mne can also predetermine the naxiaum angle
(vertical wavenumber) of propagating energy at the source by truncating the normal
node sum at the appropriate efgenvalue. However, {t may not always be necessary to
use the {nitial enviromaent to obtala the norwaal mode solutifon as s demonstrated by
“{lhert in Sec. VI1 for Test Case 3, wheve he greatly simpliffed the tnit{al eavi-
ronyentl aml truncataed the normal mode sum.

Ingtead »f depending on a nornal-mode calculation to inftiallze PE, certain
{eplemeatatione use aa avalytical {nftial fleld at r, designeld to closely aatch
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the spherical-wave solution of the elliptic equation for a point source at depth
zg in a homcgeneous environment

ik,R
p(r,z) = % © , R=(r2 + (z - zs)z);2 . (76)

This approach is based on assumptions thac neither boundary nor refraction effects
are important to range r, and that the far-field approximation obtains,
korg>>le

Fellowing this logic and at the same time seeking to reduce the energy of
large~angle propagation, Tappert3 has proposed an initial PE field with envelope
of form

¥(ro,2) = S exp(-(z - 2z)2/W?) (77)

where S and W are to be determined. When ncrmalized, this fuaction of 2z has the
form of a Gaussian density function with mean zg and variance WZ/Z, aud 1is thus
termed a "Gaussian sourze.” If not truncated, its wavenumber (ky) power spectrum
(Fourier-transform modulus squaredi) is also Gaussian, with mean O and variance
W2/4. When limited to Izlf?max» the transform has sidelobes caused by the con-
volution of the Gaussian with a shape of form (siny)/y where y is (zZgax "*z)-

Followling Brock14, the solution of the PE equation in a homogeneous meiium
with the starting field given by Eq. 77 yields

- - 2
¥(r,z) = s(1 + ii%g) Texp(- AL 28)Ty (78)
O

We(l+ {12v
kW2

By wmatching the elliptic (Eq. 76) and parabolic (Eq. 78) solutions for small angle
(r >>|z-zs ), one obtaiuns

. 1,2 4
S = =(&-
N(ko)
and
o Mg
W= 2k,

According to Tappert3 some of the advantages of -he Gaussian form are:
(1) It ts a "natural” for a snmall angle approxieation (}z-z;|<<r); (2) In the
Imit of |z|>>N, 1t {5 smooth and has minimal sidelobes in both z and k space;
(3) The phase {s correct for a point sourca in a homogeneous mediun, and the depth
dependence {s correct to “second order f{n angle” (i.e. to second order in

|z-zsl/1)-

The principal disadvantages of the Gaussian field were polnted out by D. Wood
and J. Hanna {n talks at the workshop: (1) It is eysmetric about the source-depth
and hence not appropriate anear boundacies; (2) In waveaumber (angle) space it “"rolls
off” glowly--thereh» allowiug energy correspoading to high angles to propagate and
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at the same time reducing the energy for small angles (l.e., 1t does unot match the
field of a wavenumber-limited point source).

There are, of course, alternatlves to the Gaussian initial field which also
simulate a wavenumber-limited point source. Thomson's model (this workshop),
employs a weighted (sinx)/x foru with x =8 (z-zg), whose transform (in the limit
of z>>B) is a rectangular "boxcar” function with value zero for |k|>8 and coamstant
for |k|<ﬂ. Garon, Hanma, and Rost2! and Hanna (this workshop) described the
gource function for the SAI PE in the context of a digital (wavenumber) filter. The
shape of the inital angular (wavenumber) spectrum 1s specified in a digitized form.
The transform gives the initial depth-dependent field. This allows for special
gsource shapes, and can easily accommodate changes In the z-mesh size. Both the
Thomson and Hannz approaches give a sharper cut off of angles than the Gaussian
field--thereby allowing large z-mesh size and range step.

For reasons mentioned above, 1t is usually desirable to limit propagating
angles (wave numbers) not only at the source, but also down range. Some versions of
PE (e.g., SAI) accomplish this by applying a wavenumber filter to the Fourier-
transformed solution at each range step. This is especlally efficient for the
split-step algorithm since the transform is avallable at each step. Without such a
filter, 1t is possible for PE solutions to accumulate contributions from what are
equivalent to modes with angles outside PE's realm of applicahility.

IV. TEST CASES - GENERAL

A. INTRODUCT ION

To provide a basis for comparing and analyzing PE programs, four test problenms
were devised, each designed to test some aspect of the program's capabilities. The
tests are obviously not exhaustive but do focus on some of the capabilities required
to meet the needs of the SEAS program. The cholce of test cases was subject to the
following constraints: (1) the number of cases should be small; (2) input
parameters that define the prublems should be relatively simple (thereby ruliag out
many range dependent environment cases); and (3) computer costs for execution should
he kept as low as posgsible (thereby ruling out long range and/or high frequency).
The four problems selected were:

Test Case 1 - Range Dependent Surface Duct

Test Case 2 - Bilinear Profile

Test Case 3 - Range-Independent Shallow Water Enviromment

Test Case 4 - Basin/Slope/Shelf Configuration for Geoacoustical Bottowm

Details of these test cases will follow in later sections.

Participants were encouragel to exerclse thelr PE programs for as aaay fest
cases as possible even though the programs way not have been designed to treat all
¢4.18, e.8.. .. plying a PE program to Test Case 3 that {s not designed to treat
attenuation, Jdensity, and sound speed discontinuities. The objective was not to
encourage & poor showing but rather to determine the consequences of applying a PE
to a test case It was not deslgned to handle and at tne same time deteraine the
coasequences of applying some other PE that was designed to handle that same test
case--thereby permitting an assessqent of the value of such modificat{ons or
{aprovements. That objective was wmet with a fai{r degree of success.
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Table 2 summarizes the characteristics of the PE programs that were exercised
against the test cases. In this table, and in ones that will follow, we use the
shorthand notation given in Table 3. Abstracts of these PE programs are given in
Appendix B. Appendix B also contains abstracts for SNAP and FFP, the SACLANT ASW
Research Centre programs that were used as "reference"” calculations. The SNAP
result 1s used as the reference calculation in the test case comparisons and is
vreferred to in the figures as "MODE." Table 4 shows which test cases were attempted
by each program. The X's that are underlined indicate that the test case was run
but the results are not included in this rveport. The SAI-1 case 2A was not to the
correct scale, there was a yet unidentified problem with the NOSC results for case
4, and the SAI-2 program contained a compiler error that affected all but cases 2B
and 2C. The NUSC-2 program is not a typical PE (it uses a normal mode program to
solve SPE), and the result for Case 2 1s included primarily for comparison with the
usual PE results.

B.  COMMENTS ON WORKSHOP

In fairness to the workshop participants some general comments should be made.
First, there were scaling problems at the workshop that precluded defiunitive
comparison of results. This was due in part to requiring a less-than-ideal plot
scale for viewgraph preseantation, and in part by not recognizing the consequences of
the distortion introduced by reproducing viewgraphs from originals on a varlety of
machines. Second, some particlipants had the advantage of resources (e.g., normal
mode programs) with which they could "tune up" their PE results. Ideally two types
of results from each participant would have been extremely useful: (1) a routine
run; and (2) a thorough analysis of the test case with a "tuned up” run. Since
resources varled, initial results spanned this range.

Because of the above cousiderations, it was decided at the workshop that every-
one would be given the reference calculations (to be shown in later sectiomns), and
that participants could then submit new results, due a month after the workshop (May
1981), based on this information and knowledge gained at the workshop. Participants
ware also offared the opportunity to comment on their results, in writing, to aid in
the analysis. However, the response from the authors of the various PE programs was
einimal and the interpretation of the results is almost entirely due to the authors
of this report. It was also decided to include the tvesults of Gilbert (NORDA), al-
though he had not presented them at the workshop because the program was described
at the workshop, the results were delivered before May 1981, and the cesults pro-
vided alditional evidence of the accuracy of the "high-angle™ PE.

One additional comment {s appropriate at thils polat. Most programs exerclised
at the workshop had been in existence for some time and were llkely debugged. Other
programs such as DREP (Thomson), NORDA (Gilhert), SAI-2 (Greene), aand URI (Papadak-
{s) were relatively new, and likely were not thoroughly debugged.

c. FORMAT OF TEST CASE RESULTS

Standard{zation and conveations are obviously necessary for comparfison of test
case results. To this end, a source is understood tc he the fixed fleld point at
zero range, and a recelver (s the fleld point that varles with range. Unlesgs other~
wise noted, the sound speed {s assumed to extend as constant heyond the deepest
depth specified, f.e., an {so-veloci{ty half space underlies each cise anld precludes
the return of energy (a radfation boundary conlition at z—a=). The sound speed is
ussuned to be a linear function of depth between given points. Transaission loss is
{n dB re 1 @ and range 1s {n km. Average TL rasults are {ntensity averaged over a
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Table 3. Notation used In test cases

SPE Standard PE
CIT Tappert's Co-independent PE
HAC Claerbout's high-angle PE
HAG Greene's high-angle PE
G Gaussian source
S SAI source
D DREP source
NM(r) Normal mode source at range r
U User input
SS Split-Step algorithm
FD Flulte difference
FE Finite element
cs Cubic splines
FULL Full bottom treatment
IMP Inpedance boundary conditioas
AB Attenuating bottom, smeared sound speed
FB False bottom with attenuating
layer
a Range increment
8 Bepth increment
- Not relevant
? Not known to authors
27
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Table 4. Programs exercised against test ca. s

TEST CASES

1 2 3 4

ABC ABC AB ABCD
BTL XXX XXX X X X X
DREP XXX XXX X X XX XX
NORDA XX
NOSC XXX X
NRL-1 XXX XXX XX XXXX
NRL-2 XXX XXX XX
NRL-3 XX XXXX
NUSC-1 XXX XXX XX XXXX
NUSC-2 XXX X
SACLANT ka XXX X X XXXX
SAI-1 XXX XXX X X XXXX
SAI-2 XXX XX XXXX
URT XXX XXX XX XXXX
REF XXX XX XX X
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specified interval. It is worth noting that participants used different averaging
schemes and it should be recognized that this can contribute to differences between
results.

D. INTERPRETATION OF RESULTS

In the following sections (V~VIII), for each test case: (1) the test problem
i{s defined, (2) the PE program results are presented, and (3) the results are
interpreted. The first two are straightforward. An explanation of why each PE
performed as it did is not so stralghtforward, and is best left to the author of
that PE gince he alone knows how he parameterized the particular test case to fit
within the limitations of his PE. It would be a monumental undertaking for the
authors to “"dissect” every PE for every test case, espéclally Case 4. The analysis
for each test case 1s therefore superficial in the sense that we speculate on the
origin of differences among various PE results based on treatments of: (1) initial
field, (2) Interfaces, (3) radiation conditions, and (4) type of PE equation. Our
iaterpretive remarks tend to be general rather than specific, and are by no means
conclusive. Finally, evaluatiocn of how well a PE did Is somewhat subjective and
depends to a great exteat on what features are the most important for the case in
question. The results speak for themselves, and the reader can draw his own
conclusions.

V. TEST CASE 1 (Range-Deperdent Surface Duct)

A. DEFINITION OF PROBLEM

This test case has a range-dependent surface duct and consists of profile la
from 0 to 20 km in the first region, a transition from la to 1lb over the range
Interval 20 to 30 km In the second region, and profile 1lb from 30 to 50 km in the
third region. Pertinent parameters are shown in Table 5.

The profile ia the transition interval is range dependent between depths of 0
and 300 m and 1s given by:

h(r) = 300 - 10(r-20),
Cg(r) = 1480 + 1.238(r-20),

and
Cq(r) = 1500 + 0.571(r-20),
where
heey 18 the depth (@) of the duct,
Cs(r) is the sounl speed (m/s) at zero depth,
r 1s the horizontal range {n ka,
and

C4(r) is the sound speed (m/s) at the bottom of the duct.

There are three parts to this test case as defined by the cecelverv Jdepths;
(A) 25 m, (B) 250 m, and (C) 400 m.

The 25 m source ts {n the duct, as s the 25 am recelver. The 250 a recelver is
inftfally in the duct {a the first region, goes frow in-duct to below-duct {n the
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Table 5. Parameters defining Test Case 1

TEST CASE 1
Frequency = 25 Hz
Source Depth = 25 m
Receiver Depths = 25, 250 and 400 o

Max Range = 50 kam

Profile la:

Depth (m) Sound Speed (m/s) Density (g/cm3) Attenuation (dB/km)
0 1480 1. 0.
300 1500 1. 0.
1000 1460 1. 0.

Profile 1b:

Depth (um) Sound Sreed (m/s) Density (g/cm3) Attenuation (dB/km)
0 1492.38 1. 0.
200 1505.71 1. 0.
300 1500.00 1. 0.
1000 1460 1. 0.

Plots--TL vertical scale 60-130 dB at 10dB/inch
Separate plots for each receiver depth
0 to SO km at 5 ka/in
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transition reglon, and 1is below-duct in the last reglon. The 400 m recelver is
always below the duct.

Modal analysis of this case shows only one trapped (but slightly leaky) mode in
the first region, that transitions into an untrapped mode in the last region. This
should be an easy test for any PE program since phase errors should not be a problem
(there 1is only one mode and C, can be selected with confidence), since the range
dependence of the environment is weak, and since attenuation, sound gpeed and
density discontinuities or rapid variations are not present. That 1s to say that
all PE programs should agree and give the "correct” answer. See Table 6 for a
summary of the PE program pdrameters used for Test Case 1.

B. RESULTS AND SUMMARY FOR TEST CASE 1

No reference calculation was available for this problem over the full range (0
to 50 km); however, the test results of NRL-1, NUSC-1, BTL, aad SACLANT are
virtually identical and agree with range-independent environment normal mode results
up to 20 km. Figure 1 ghows the NUSC-1 results for the three receiver depths and is
typlcal of NRL-1, BTL, and SACLANT.

The results from other programs exhibited slightly different behaviors, and
seaveral types of problems were uncovered by this test case. These probleams are
examined using part C (400 m receiver) as the example. The first is the problem of
"false" bottom retarns and {s shown in Figure 2 comparing NRL-2 with NUSC-1 for the
400 m recelver. The spurious oscillations in the NRL-2 result are due to medium~ or
hizh-angle energy returning ianto the problem from the bottom, i.e., caused by
insufficient attenuation in the bottom or by transform artifacts (sidelobes or
allasing) which redistribute the energy into higher angles. This is also typical of
the SAI-1 result (not shown). Both use the SAI filter (Hanna) to determine the
initial field and eliminate higher angle energy as the solution progresses in range.
The difficulty is caused by the algorithm that determines the mesh size (§) and prob-
lem extent (zp,.) from the requested beamwidth. The algorithm yields an effective
heamwidth greatec than or equal to that requested. For this particular problem the
half-beanwidth {s greater than 90° regardless of the beanwidth requested, and there
is little or no attenuation of hottum returns. Brock was able to correct the NRL-2
result for this problem by using a new z,,. inversely proportional to the beam~
width. The result (not shown) {s virtually the same as NUSC-1.

False bottom returas would hizve also heen present i{n the NUSC-1, NRL-1, BTL and
SACLANT results had a 2, = 4/3 W been used, {.e., a false bottom layer of 333 =.
The prublem was avolded howaver by uslag a larger layer Jdepth, as indicated in Table
6. The degrae to which the false botton duplicates the radlation condition is
ohviously Jepeadent on the attsacat{on {n the layer and the layer thickness.

Oscillations are also preseat in the DREP result coapared in Figure 3 for the
400 a1 receiver depth. Thelr orlgin s not casy to determine, since the false bottom
use:l dn the DREP caleulation exteanded to 6000 m. The spurious oscillatfons {n the
URT results, shown {n Figure 4 for a receiver depth of 400 m, cannot be attcibuted
to a false hottom since tmpedance conditions were employed. Papadiakis attributes
this to numerical nofse that can occur when the signal gets low; however, {n this
case, we see the level (s on the ovder of 90 dB in the 10 to 30 ka interval.

Finally, the NOSC result is shown {n Flgure 5 for a receiver Jdepth of %00 =.
In this case a normal wmode solution was used to generate the field to 4 range of
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ﬂ Figure 1. NUSC-1 PE results for Test Case 1
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Figure 2. NRL-2 PE results for Test Case 1C compared with NUSC-1 PE
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Figure 3. DREP PE result for Test Case 1C compared with NUSC-1 PE
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20 km where the PE calculation is initiated. We have no explanation of the oscil-
lations between 20 and 25 km, but they are likely due to matching the PE calculation
to the normal mode fileld.

This test case has demonstrated that PE results for a narrow beam problem with
no drastic range dependence of the environment and no bottom comp’ications (other
than that the radiation condition be satisfied) are relatively insensitive to com-
puter type, starter, z and r mesh, phase corrections, choice of C,, and whether
solved by SS or FD.

Questions raised by this test case, but not answered, are: (1) what is the
most effective way of approximating the radiation condition, and (2) how often
should a range dependent enviromment be sampled?

VI. TEST CASE 2 (Bilinear Profile)

A. DEFINITION OF PROBLEM

In this test case the environment is range-independent with a bilinear sound
speed in the water column and a half-space bottom. It consists of three parts and
the parameters are given in Table 7.

The rationale for this case is to test the beamwidth capabilities of a PE pro-
gram without the complications of bottom interaction other than ensuring that no
energy returns to the water column. Case 2A requires a 15° half-beamwlidth capabili-
ty, 2B a 30° half-beamwid" " capability, and 2C a 40° half-beamwidth capability.
There is a continuous spectrum in this problem because of the branch point at z=1500
m; however, this contribution 1s negligible beyond 10 km for all three cases, and
SNAP (which does not treat the continuous spectrum) and FFP (which does treat the
continuous spectrum) should agree, as they did. The reference calculacion for this
case is the SNAP result which we refer to as MODE.

We would anticipate that all PE programs should be able to do well on 2A and,
without a high-angle capability, they should have some difficulty with 2B and have
serious problems with 2C. Initial field conditions (amplitudes cf corresponding PE
modes) and phase errors will govern the accuracy of the results. See Table 8 for a
summary of PE program parameters used for Test Case 2.

B.  RESULTS FOR CASE 2A

For this test case, which required a 15° half-beamwidth capability, all PE's
did well with little disagreement in detiil. The most accurate result was NRL-1
with CPA. We do not show it because it is virtually the same as thes MODE result.
We show instead in Figure 6 the MODE reference calculation along with the envelope
formed by the DREP, NRL-1 (no CPA), NUSC-1, NUSC-2, SACLANT, and URI results. This
1s an extremely tight envelope and there is little to choose betwecen the various
results.

Two model results are singled out, not because they are "bad“, but because they
are not quite as accurate as the other and are to some degree different. The first
is shown in Figure 7 which compares NRL-2 with MODE. The "kinks" in the NRL-2 curve
are due to straight-line connections between range point solutions. We believe the
NRL-2 result 1s an example of the cumulative errors caused by a crude range step
size. The BTL result, shown in Figure 8, is not so casily explained. The level is
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Table 7. Parameters defining Test Case 2

TEST CASE 2
Frequency = 25 Hz
Source Depth = 500 m
Receiver Depth = 500 m
Density = 1 gm/cm3

Attenuation = 0 dB/km

Depth (m) Sound Speed (m/8)
Part A Part B Part C
0 1500 1500 1500
1000 1520 1520 1520
1500 1563 1744 1971

Plots-—-separate plots for each ,«tt from 10 to 20 km.

-~TL vertical scale 60 to 130 48 at 10 dB/in.
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Figure 6. Envelope o7 various PE results compared with reference calcuation (MODE)
for Test Case 2A
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Figure 7. NRL-2 PE result compared with reference result (MODE) for Test Case 2A
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good but we are unable to account for the disagreement in detail. We would have
expected this result to fall within the envelope shown in Figure 6.

One conclusion evident from thils test case is that CPA 1is effective when the
SPE phase error 1s small, seemingly more effective than CMOD (used in the SACLANT
result in Fig. 6). However, SPE without corrections is very accurate, and any
corrections should be small. Since this is the only case where CPA is used, we
cannot evaluate 1its effectiveness in later cases where the SPE phase error is not
small.

c. RESULTS FOR CASE 2B

All PE's did well on the average for this case but differed in detail. A half-
beamwidth capability of 30° is required. We show first the SAI-2 result in Figure 9,
compared with the MODE solution. This is the most accurate PE solution for this
case and glves surprising agreement in detail (the pattern in Fig. 9 is caused by
the interference of 22 modes). This is an excellent demonstration of the capability
of the rational linear (high angle) approximation. We should note that there was a
compller error in Greene's program (discovered after the workshop) that produced
gspurious results for most of the test cases. While the consequences of that error
are included in Figure 9 (as well as in Fig. 13 for Test Case 2C), we assume that
elimination of the error can <nly improve the accuracy. This was demonstrated after
the workshop by results Greene obtained using a some what different program, but
still a rational linear approximation.

In this same connection Figure 10 compares the DREP result against the MODE
result. Although the level is reasonable, the detailed agreement is poor. This is
difficult to account for siance the DREP program also solves PE in a rational linear
approximation.

Results from the remaining programs are best sorted out in terms of whether or
not the CMOD phase correction was applied. Figure 11 shows the envelope formed by
the NRL-1, NUSC-1, NUSC-2, and URI results, none of which used the CMOD correction
while Flgure 12 shows the envelope formed by the BTL, NRL-2, SACLANT, and SAI-1
results, all of which used the CMOD correction. These figures show that the CMOD
correction produces significant differences, greater than the differences within the
two envelopes caused by beamwidth, mesh size, etc. It wouid appear that CMOD
improves the results.

D. RESULTS FOR CASE 2C

Results for 2C, which required a 40° half-beamwidth capability, are similar to
thogse for Test Case 2B. Transmission loss levels over the range interval are fair,
but the details are not very good except for SAI-2 shown in Figure 13. This is
strong evidence that a "high-angle” PE can give accurate results for problems having
beamwidths up to 40°. The DREP result, Figure 14, has the correct level but again
serious phase problems.

As in Test Case 2B, the remaining results are best presented in terms of
vhether or not a CMOD correction was applied. Figure 15 shows the envelope formed
by the WRL-1, NUSC-1, NUSC-2, and URI results, none of which used the CMOD correc-
tion, while Figure 16 shows the envelope formed by the BTL, NRL-2, SACLANT and SAI-1
rasults, all of which used the CMOD correction. As for Teet Case 2B, the differen-
ces between the envelopes are greater than the differences within the envelopes. It
18 not clear whether CMOD {mproves the overall results {n this case.
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E. SUMMARY FOR CASE 2

Test Case 2 has demonstrated that SPE can give an accurate answer for a small
beamwidth problem if there are no sound speed, density, or attenuation disconti-
nuities, whereas for larger beamwidth problems average levels are predicted well but
phase errors cause disagreement in detail. It has also demonstrated that a "high-
angle” PE, in this case Greene's rational linear approximation, caa provide a good
approximation to the elliptic solution for a range-independent problem containing
half beamwidths up to 40°. 1In addition this test case indicates that in a situation
where the phase errors are small (i.e., SPE is very accurate), CPA provides a more
accurate correction than CMOD. For larger beamwidth problems all SPE's give essen-
tially the correct level but are unable to reproduce the details. CMOD appears to
slightly improve this situation. It is not known whether CPA would provide an
improvement in general. The PE results are relatively independent of r-z mesh,
initial field, details of imposing the radiation condition, and method of solutionm,
i.e., split-step or finite difference.

VII. TEST CASE 3 (Shallow Water)

A. DEFINITION OF PROBLEM

The enviroument for this case 1s range-independent and consists of an isoveloc-
ity water column over an isovelocity half-space bottom. Parameters for the two parts
of the problem are given in Table 9. It represents an fdealized shallow water envi-
ronment and was designed to test whether PE can accurately handle sound speed, den-
sity, and attenuvation discontinuities for a simple problem where the half-beamwidth
requirements are less than 20°.

There is a continuous spectrum in this problem because of the branch point at
100 m. However, its contribution is negligible beyond 5 km, and thus the SNAP and
FFP results should agree, as they do (comparison not shown). There are 1l propa-
gating modes (corresponding to a half-beamwidth of 18.5°). However, with the source
and receiver in the middle of the water column, a 7 mode solution (corresponding to
a 12° half-beamwidth) is fairly accurate in the 5 to 10 km range and a 9 mode solu-
tion (corresponding to 15° half-beamwidth) is extremely accurate in the 5 to 10 km
range. Thus a half-beamwidth capability between 12 and 15° should be adequate to
accurately handle Case 3A. For Case 3B, with the source and receiver just off the
bottom, the higher modes are wore strongly excited, and all 11 modes are required
€or an accurate solution in the 5 to 10 km range interval. This in turn requires a
half-beamwidth capability of 18.5°.

It should be noted that for Case 3B, where the source i{s within 0.08 wave
lengths of the bottom interface, we also have a test of the initial field employed
i€ it assumes that the source is a few wavelengths from any boundary. See Table 10
for a summary of PE program putameters used for Test Case 3.

As mentioned {n Sec. III-F, the NORDA program employed as a starter a normal
mode solution based on 3 simplified initial environment. This environment was iso-
velocity, constant density, with zero absorption and with pressure release houndary
conditions at © = 0 and z = 650 m.

B.  RESULTS FOR CASE 3A

Results for this case are mixed and for the first time some PE's have Incorvect
levels. 1t {s worth notiag that CMOD was not applied for this test case (both parts
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Table 9. Parameters defining Test Case 3

TEST CASE 3

Frequency = 250 Hz

Water Depth = 100 m

Sound Speed in Water = 1500 m/s
Deasity in Water = 1.0 g/cm3
Density in Bottom = 1.2 g/cm3
Attenuation in Water = 0
Bottom Attenuation = .5 db/a
Bottoa Sound Speed = 1590 m/s

Max Range = 10 km

Part A:
Source Depth = 50 m

Receiver Depth = 50 m

Part B:
Source Depth = 99.5 m

Receiver Depth = 99.5 m

Plots--Separate plots for each part from
5 to 10 km at 0.5 ka/in.
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A & B) as it is not appropriate for isovelocity problems. The most accurate result
was that of NORDA shown in Figure 17; it is essentially the same as the MODE result.
- This accuracy is the result of proper treatment of discontinuities and, as will

. !E shortly become evident, of the efficacy of the rational linear approximatfon. On
the other hand the DREP result, shown in Figure 18, seems to be off by a coanstant
range shift, for which we have no explanation. The compiler error encountered by
Greene (SAI-2) seriously affected the resu’ts for this test case and plots are not
shown. His cnrrected version and new program give results comparable tc the NORDA
results.

The next iL>st results are shown in Figure 19, which displays che envelope of
the KRL-1, NRL-3, NUSC~1, SACLANT and URI transmissinn losges. The level and detail
are good, and the envelope is fairly tight despite the difference in equations being
solved, treatment of the bottom, starter, and solution technique. Notice in partic-
ular that NRL-1l does very well, although it does not have a bottom treatment appro-
priate for this problem (see Table 2).

An extremely important observation can be made upon comparison of the NORDA
prediction (Figure 17) and the envelope of Figure 19: the high angle PE is more
accurate than SPE for a case requiring a half-beamwidth of less than 15°. The poiat
made by this result is that high-angle PE ia not ouly more accurate in phase than
SPE for large angles, but is also more accurate in phasgse at small angles. The SPE
phase errors in this test case are evidently just anough to prevent forming the
precise mode in.erference pattern. Since phase errors are accumulative in range,
this has impcortant implications for relatively narrow beam, long range propagation
problems.

The NkL~Z result is prosenced In Figure 20. This result is not bad, but is
dlfferent from those in Figure 19. The difference,we believe, is primarily due to
the range step size and to sowe degree the treatment of the bottom. The SAI-1 and
BTL results are ghown in Figure 21. Mere the levels are considerably in ervor aad
the detalls are coapletely different.

C.  RESULTS FOR CASE 3L

This was an extremely difficult case as {llustrated by the comparison of MODE
(SNAP) and FFP in Figure 22. Agreement i{s excellent excapt near the null in the
vicinity of 7 km. There are obvicus numarical problems that can acrise vhen 1l modes
must alzost exactly cancel. Other norwal mode results (not shown here) indicate

- that the FF? solution is correct; however, we will, s3 for the previous Lgst cases,
g use the MODE (SNAP) results as reference. The null at 7 km 1s on the order of 172
ka wide ana is {nteresting in its own right. It i{s also predicted by a fully
coherent ray theory calculatfon. Ray theory snaly ls indicates that there is a
complicated Interaction of well-wnown effects which, by happenstance, coabhine o
produce a null. It 1s not appropriate to predent that analysis here, nor Lo examine
the circumstances under which {t can occur. Of more preseant interast is that the
analysis shows that {ts reproduction raqulires an asccurste treatment of the phase and
water/bottoa faterface.

This test case posod problems for PE both in l-ovel and ia detall; however, the
NORDA result shown in Figure 23 fs very accurate {(vecall that the HODE rexult dues
not faithfully reprodute the null). This {s further supporting evidence that a
high-angle P& with propzv bottos treatment 35 an oxtremely powerful aspproxizmation.
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Figure 17. NORDA PE resuit compared with reference result (MODE) for
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Figure 13. DREP PE result compared with reference result {MODE) for Test Case 3A
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Figure 19. Envelope of the results of a group of PE programs compared with
reference result (MODE) for Test Case 3A
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Figure 20. NRL-2 PE result compared with reference result (MODE) for Test Case 3A
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Figure 22. Comparison of MODE (SNAP) and FFP results for Test Case 3B

e MODE
~—=~= NOHDA

TRANSMISSION LOSS (dB re 1m}

11% L L 1 \l‘ i 1 1 L L :
.0 55 6.0 8.5 7.0 75 8.0 85 8.0 95 10.0

RANGE (km)

Figure 23. NORDA PE result compared with reference result (MODE) for
Test Case 3B

53

P ¥ M e hni®, " PSRN VPR WP AP NP SUUIY WURE SR S eSS g S S



Figure 24 ghows the envelope of the NRL-1, NUSC-1, and URI results, all SPE's.
Notice that the average level is good but the detailed pattern is not good. Figure
25 1is the SACLANT result and is shown separately as an indication of how C, can be
selected to reproduce a particular feature. In this case the null at 7 km is repro-
duced, but the details at other ranges are no more accurate than the Figure 24
results. The NRL-2 transmission loss is shown in Figure 26; it is neither better
nor worse than the SPE's in Pigure 24, but is different. The DREP and NRL-3 results
are shown in Figure 27. These again are no more or no less accurate than the
results in Figures 24 and 26. The SAI-l and BTL results are shown in Figure 28 and
quantitatively the same as for Test Case 2A, 1.e., the levels and details are off.

Finelly, note that a display of the sensitivity of transmission loss to source
treatment is obscured by the lack of agreement of any method, except NORDA's, with
the reference. Even though the source is .08 wavelengths from the water/bottom
interface, the fact that the NORDA normal mode starter is based on a homogeneous
medium (no discontinuities) suggests that the form of the initial field is not very
important for this casa. Other results, such as the envelope of Figure 24, in which
models utilizing a variety of source types yield similar predictions, support this
conclusion. '

D.  SUMMARY FOR CASE 3

We repeat here several specific results of this test case which appear to be
generalizable. First, PE can do well in predicting average transmission loss levels
for bottom interc:ction problems only if some reasonable approach to handling the
bottom i1s included in the PE algorithm. This approach may be crude in some speci-
flcs, such as in this case where several programs used constant density even though
there was a density change. The conclusion holds whether SPE or other PE forms are
used and whether the PE is implemented through split-step, finite difference, or
finite element techniques. Second, correct detail in the range dependence of the
transmission loss is lacking unless energy at even relatively low angles (10°) is
treated accurately. Third, the high angle approximation can represent this energy
much more accurately than SPE and, because of this, can track transmission loss
tiirough a larger range of levels. The last point, one which has long been accepted,
is that the choice of C, appears to have little effect on average level, but can
have major effects on specific detall, and in fact can be chosen to produce "special
effects" such as the proper location of the deep fade in part B.

VIII. TEST CASY 4 (Basin/Slope/Shelf with Geoacoustical Bottom)

A DEFINITION OF PROBLEM

This test case has a range-independent sound speed in the water column, a
range-dependant bottom depth consisting of a basin-slope-ghelf configuration, and a
simple geoacoustic bottom (a sediment layer overlying a basement) with sound speed
proportional to that at the bottom of the water column. The parametera defining
this case are given in Table 1l. This is perhaps the most realistic of the test
cases and 1s a modified version of a recent SEAS problem of interest. The 700 m
receiver has a positive depth excess of 1346 m iu the basin, becomes bottom limited
on the slope at a range of 171 km, and strikes the bottom slope at a range of 192
km. The 150 m receiver is bottom limited throughout. Because of the test case
parameter values, energy up to angles of 40° returns to the water column. This case
is therefore a stringent test for any PE because it requires proper treatment of
interface conditions (discontinuous sound speed and density at the water column-
seliment and sediment-basement interfaces), a large half-beamwidth capability, and
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Figure 24. Envelope of NRL-1, NUSC-1, and URI PE results compared with
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Figure 26. NRL-2 PE result compared with reference result (MODE) for
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Table 11l. Parameters defining Test Case 4

TEST CASE 4
Frequency = 25 Hz, Source Depth = 600 m, Maximum Range = 250 km

WATER COLUMN PARAMETERS

Depth(m) C(m/s) Density (glcm%l Attenuation (dB/km)
0 153903 ' 10 00
30 1539.8 1. 0.
200 1534.2 1. 0.
600 1502.4 1. 0.
700 1495.4 1. 0.
800 1491.8 1. 0.
1000 1488.0 1. 0.
1100 1487.5 1. 0.
1200 1487.9 L 0.
3410 1525.0 1. 0.
BOTTOM DEPTH
Range Bottom Depth
0-150 km Constant 3410 m
150-200 knm Linearly decreasing with increasing range from 3410 m
to 200 m

200-250 km Constant 200 m
SEDIMENT

Sound speed at top of sediment 18 CTg(r) = .975 x Cy(r) where Cy(r) 1is
the sound speed at the bottom of the water column. Sound speed at the bottom of
sediment is CBg(r) = 1.305 x CTg(r)

Sediment thickness = 454 m (constant in range)

Attenuation = 0.015 dB/km/Hz

Density = 1.5 gm/cm3
PLOTS: 700 m RECEIVER DEPTH

4a - 1.0 km average from 10 to 50 km at 4 km/in
4b - 20 km average from O to 250 km at 25 km/in

1506 m RECEIVER DEPTH

4c - 1.0 km average froa 175 to 225 km at 5 km/in
4d - 20 km average from O to 250 km at 25 ka/in

For additional clarification at a range of 200 kam: Water depth = 200 n; Cy (200

ka) = 1534.2 m/8; CB; (200 km) = 1952.1, CTg (200 km) = 1495.8; and Basement
depth = 654 m.
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a range sufficiently great (250 km) that cumulative phase errors can significantly
distort the resultant PE field.

Details of normal mode predictions for the range-independent portion of this
problem were found to be sensitive to particular mode program's treatment of sound
speed interpolation in depth, density discontinuities, etc. It was therefore
decided to aveid comparisons of the details of the field. It was decided instead to
first compare intensity average results on a fine enough scale (1 km) in particular
reglons of interest to allow meaningful comparison of the relative behaviors, yet
not so fine a scale as to make comparisons unduly difficult, 1f not meaningless. At
the other extreme, a gross intensity average (20 km) provides an overall comparison
of levels and trends. Since this 20 km average is roughly equivalent to an
{ncoherent mode sum, the PE results should be relatively insensitive to phase
errors.

Another and perhaps more important driving factor in the use of intensity
averages versus detailed transmission loss is that the reference calculation (SNAP
or FFP) can be used with confidence only in the basin area (0-150 km). The
“correct” solutfon in the slope and shelf areas (150-250 km) is not known and
comparison of results is somewhat of a "bootstrap™ situation. Although an adiabatic
SNAP solution is used as a reference result for the 150 m source (20 km intensity
average case from O to 250 km), it should be recognized that it is an approximate
solution and its accuracy relative to the "true solution” is not presently known.
A coupled mode solution for Test Case 4 would have been desirable but was not
available. Thus, we will be comparing PE results that contain full coupling but
have beamwidth constraints with an adiabatic mode result which has no beamwidth
constraints but ignores mode coupling. Consider an additional complication in
comparing average results: for any detailed intensity-range function, the average
result will be sensitive to the weighting of the values within the given interval
(e.g., umiform or nonuniform) and to the range values for which the average is
generated (e.g., a running range step average, or an average for every range value
corregponding to the mid-point of the range interval).

The test rationale for each of the cases 1s as follows:

4A. Capability to treat, on a 1 km average level of detail, a case that has
positive depth excess, but considerable bottom interaction.

4B. Capability to correctly partiticn water column and bottom interaction
energy for a case that has positive depth excess but considerable bottom
interaction.

4C. Capability to track on, a 1 km average level of detail, up a slope and
onto a8 shelf under strong bottom limiting conditions.

4D. Capability to correctly partition energy across a basin up a slope and
onto a shelf under strong bottom limiting conditions.

For Test Case 4 we found 1t difficult to idencify patterus, similar{ities,
etc., among the various PE results which would allow sensible groupings for
graphical presentations. Rather than presenting the results individually (whi:h
makes intercomparison almost impossible), the results are all sresented in one
figure for each test case. Table 12 gives the PE program parameters for Test Case
4. For convenience, in Table 12 we use the following short-hand notztion to
describe the type of intensity averaging used:
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LIN - equal weighting of points within the averaging interval

EXP - exponential weighting of points within the averaging interval

R - average over the interval for each range-step

I - average over the interval for each range corresponding to the mid-point
of the interval.

B. RESULTS FOR CASE 4A

The PE results for the 700 m receilver case {1 km intensity average) are mixed
and are shown in Figure 29 with the MODE cesult given by the black line and the
variour PE's color coded according to the legend. It is clear from Figure 29 that
no one PE does well thLiroughout the range from 10 to 50 km. As an aid in understand-
ing these results see Figure 30 which shows the MODE result for modes 1 through 16
(corresponding to a 12.5° half-beamwidth), modes 1 through 56 (corresponding to a
30° half-beamwidth), and the full solution modes 1 through 77 (corresponding to a
40° half-beamwidth). The 16 mode solution contains only RR paths while the 56 and
77 MODE solutions include bottom-interacting paths. Notice the small spread of the
various PE results and agreement with the MODE result in Figure 29 at ranges (34 to
40 km and near 46 km) where in Figure 30 the RR paths are important. In all other
regions the RR paths are not important, and the spread in the various PE results is
greater. The 56 mode solution and the 77 mode solution are nearly the same except
in the range interval from 10 to approximately 14 km. Notice also in Figure 29 that
all PE's over estimate the loss from 10 to 14 km because the higher angle paths are
not present. Apart from the RR region, detailed agreement is poor and average
agreement is fair. Although they are not really designed to handle this wide a
beamwidth, the NRL-1 and SAI-1 results compare surprisingly well; this is probably
due to the large half beamwidths (greater than 30°). The primary reason for lack of
better agreement of PE in the 16 to 30 km region is the impact (on a 1 km intensity
average level of detall) of the phase errors assoclated with SPE. An exception to
this is the DREP result for which we have no explanation.

C. RESULTS FOR CASE 4B

A refereace calculation for the 700 m receiver depth (20 km intensity
average) case was avallable only in the basin regilon and 1s shown in Figure 31 as
the black line alcng with the various PE program results (color-coded). The DREP
regult appears to be the most accurate. Apart from the NRL-1 result which
underestimated the loss (and which employed a 40° half-beamwidth) the remaining PE's
tend to overestimate the loss and form a relatively small envelope that decreases in
width with increasiﬁg range to less than 2 dB at a range of 150 km. This envelope
is even smaller if we do not include the NUSC-1 and URI results which consistently
overestimate the loss on the order of a dB or so (probably due to the 30°
half-beamwidth erployed). 1In the plain reglon (0 to 150 km) the results are a
measure of whether a PE can include all of the pertinent energy (up to 40°) and
whether the futerfaces are treated accurately enough to return energy from the
bottom.

The results should not depend strongly on phase errors since the 20 ka
intensity average is roughly equivalent te an incohecent mode sum. Thus, for
programs that attempt to take discontinuities intn account, the transmission loss
should be greater the smaller the beamwidth. This appears to be the case.

The results stsart to diverge on the slope (150 km) to the range where the
receiver depth and bottom depth are the gsume (192 kn). We cannot comment on the
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relative accuracies in this reglon as we have no reference calculation, but do note
that the spread i3 on the order of 5 dB.

D. RESULTS FOR CASE 4C

PE results for Test Case 4C (150 m receiver depth) are shown in Figure 32,
but no reference calculation is available. Information obtained after the workshop,
but not included heve, in the form of an adiabatic mode calculation (SNAP), indi-
cates that the PAREQ result agrees with the SNAP result in general level but not in
detail (i.e., interference pattern). To the extent of our confidence in SNAP, we
can use PAREQ as a reference, but must keep in mind that SPE phase errors are large
enough to preclude 1 km intensity average detail comparisons.

The agreement between the various PE's in Figure 32 is generally poor, as
perhaps might be expected because of the different treatments of interfaces, method
of solution, etc., but the large degree of disagreement i1s a little surprising.
Notice, howev. , that there tends to be some agreement between PE's in the range
interval 182.5 to 187.5 km (a spread of 2.5 dB at 185 km). This apparently is a
“slope-conversion” effect, caused by conversion by the slope of small angle energy
to high angle energy.* The agreement is not as good at shorter ranges (7 to 10 dB),
and there 1s a large spread (as much as 15 dB) at greater ranges. Also, notice that
there 1s a general decay in level beyond 200 km. Although the level is different
for each PE, the decay rate appears to be the same. As will be seen in Section D,
the PE's enter the slope region (150 km) with a spread in average level of 5 dB.
This spread is primsrily due, just as for the 600 m receiver case (4A, 4B), to
initial beanmwidth and treatment of interfaces and radiation boundary conditions.

Now the slope is approximately 3.7° and, therefore, fiom a roy perepactive
each encounter with the slope (water-column/sediment and/or sediment/basement
interface) increases the angle by 7.4°. We speculate that the agreement at 185 km
is due to (1) loszs of higher angle energy that contributed to the dissgreement in
the plain region and (2) conversion by the slope of the RR energy (less than 15° in
the plain) to higher angles. However, even though the conversion process persists
at ranges from 190 to 200 km, the various PE's are now each converting differently
and losing the higher angle energy at different rates. This conversion and loss
process 1s sensitive to the treatment of the slope and the radiation boundary
conditions, but the detalled investigation of this process for each PE is beyond the
scope of this report.

E. RESULTS FOR CASE 4D

A reference calculation from the adiabatic mode program SNAP for the 150 m
receiver depth (20 kr intensity average) case was available throughout the range of
the problem (0-250 krm) and i{s shown in Figure 33 as the black line aloug with the
various PE program results (color-coded). It 18 interesting to note that the
SACLANT (PAREQ) result, which was accurate on a 1 km intensity average basis in the
slope-shelf region in Case 4C (175-225 km), see Figure 32, displays the same
accuracy {n the slope-shelf region on a 20 km intensity average basis but over-
estimates the transmiseion loss in the basin region (0 to 150 km) by a few dB.

*The mechanics of this process are complicated, and {nclude three competing effects
on transmission loss: (1) increased bottom loss as paths become steeper, (2) de-
creased geometrical spreading loss as the waveguide constricts, and (3) reduced
surface decoupling (surface lmage interference) loss at the receiver as steep paths
become more important.
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Figure 33 is a dramatic example of the spread in average level (from 4 to 10 dB) of
PE program results for a bottom limited wide beamwidth problem. The greatest spread
is on the shelf, where we have the least confidence in the reference calculation.
Notice that in the basin region (0-150 km) the URI, NUSC-1l, and BTL results consist-
ently overestimate the transmission loss (all use a half beamwidth of 30°), and
both URI and NUSC-1 have a reasongzble interface treatment, whereas the NRL-1 and
SAI-1 results, which use constant density, underestimate the transmission loss
(using a half beamwidth of 40° and 35°, respectively). The DREP result appears to be
the most accurate in the basin and SACLANT on the slope and shelf. Again as
mentioned in part C, the programs with smaller beanwidth (30°) appear to have
removed too auch energy in going up the slope. This speculation is reinforced if one
notes that the decay rate 1s about the same for most of the PE's (and MODE) beyond
about 205 km, but the spread in level is larger than in the basin.

F. SUMMARY FOR TEST CASE 4

This test case has provided some interesting, if somewhat disappointing, re-
sults. In general, the test shows the importance of careful treatment of interfaces
in problems dominated by bottom-interaction effects. Also, it appears that a high
angle PE (appropriately large beamwidth) 1s needed to adequately account for the
bottom-interacting energy, especially for propagation up a slope and onto a shelf.
The results in the basin region appear to be more dependent on beamwidth than on
type of PE or depth-mesh, range-step or starter.

Specifically, these PE programs perform poorly at the 1 km level of detail in a
case with considerable bottom interaction (Case 4A and 4C). In tracking up a slope
and onto a shelf under bottom limiting conditions, they are not consistent (Case
4C), even at the incoherent (20 km average) level of detail (Case 4D). However,
incoherent levels are predicted within a few dB in the range-independent (basin)
environment (4B, 4D), and the PE's do very well even on the small scale when only RR
(low angle) energy dominates (4A and 4C).

Test Case 4 has indicated a need for reference solutions to a set of range-
dependent environment problems that could serve as benchmark test cases.

IX. SUMMARY AND CONCLUSIONS

This report has presented the results of the PE workshop held from 31 March to
3 April 1981. Two major objectives were met. The first objective was to provide a
forum for exchange and stimulation of ideas for those presently active in theoreti-
cal and applied PE development, as related to underwater acoustic problems. This
objective was accomplished partly in the new development section of the workshop and
partly in the test problem section of the workshop. The appendix presents the
abstracts for the new development portion of the workshop and also provides brief
model descriptions for those programs exercised for the workehop. The second objec—-
tive, a comparison of PE models and their predictions, was covered in the main text
and is discussed below.

The first half of the main text reviewed model forms and solution techniques
for PE as applied to underwater acoustic problems. First a general PE and then
specific PE equations were discussed: from SPE (historically the first and the most
common form in use) to Cy-independent PE and rational linear PE (the latest
development in general use). The CMOD and CPA modifications, designed to correct
SPE phase errors, were also outlined. Finally, several methods of solution were
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discugsed: split-step and finite difference for SPE, and schemes for the three high
angle PE's presented at the workehop.

The second half of the main text presented and compared PE model results for a
set of four ocean acoustic test cases. The test cases ranged from a simple problem,
expected to be "easy” for any PE program, to a fairly realistic basin-slope-shelf
configuration which had considerable bottom interaction and was expected to be a
“"difficult test" for all PE programs.

Detailed comparisons of test case results were not available at the time of the
workshop, but were made by the authers afterward. ZTonclusions about the state of PE
capability were then drawn, and are summarized =c follows:

1. General

a. There are many PE models in operation today. They differ in form, in
equation solved, in treatment of inputs, in boundary conditions and specifications,
in numerical method, in computer implementation, and in display of the output. Each
model has its regime of applicability, inherent assumptions, and idiosyncrasies.

Not surprisingly, this diversity of models was, repeatedly, exemplified by a
diversity of test case results. There is no "standard,"” all-purpose PE model.

b. Nonetheless, within its realm of applicability, a PE model can be a
very powerful, efficlent, and accurate predictor of sound transmission properties.
This was borne out in those test cases for which there was an accurate reference
solution. The lack of a reference solution for certain range-dependent environment
problems serves as an illustration of the gap in technology which PE can fill.

2. SPE

a. The test probleme reconfirmed that the accuracy of SPE is greatly
dependent on the vertical-angle aperture (beamwidth) of dominant propagation paths.
From a modal polnt of view, the smaller the extent of vertical wavenumbers or phase
speeds for propagating modes, the smaller the SPE errors in phase. While a 20°
half-beamwidth about the horizontal (or its equivalent “small angle" or vertical
wavenumber limit about any depression angle) 18 a traditional rule of thumb for
tolerable phase errors, in SPE, the detailed TL prediction suffers from the effect
of cumulative phase errors as range increases, both for this and even for smaller
apertures. This again was observed in the test problems-

b. For problems with a large beamwidth of propagating paths, SPE can
predict range-averaged TL (because phase errors tend to average out), but not the
details. For this case, and to a lesser extent the small beamwidth case, the
detailed SPE predictions can be quite sensitive to choice of C,.

c. The accuracy of SPE was also found to be very sensitive to the treat-
ment of interface conditions, especially for larger beamwidth problems. Proper
methods of dealing with abrupt changes of sound speed or density with depth are
required.

d. In addition to the inherent limit of any PE to "slowly” range-varying
environments, SPE was found to be sensitive to the treatment of range dependencies
in sound speed and boundary conditions. This 1s as much an environmental as an
acoustic problem.
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e. Test case results tend to be insensitive to choice of z mesh, range
step size, solution technique (split-step or finite difference), and starter,
provided of course that all were within reason.

3. CMOD

The CMOD modification to SPT was found to reduce SPE phase errors and
ninimize sensitivity to choice of C,, within the limits of the small beamwidth
congtraint.

4. CPA

The CPA modification to SPE was demonstrated in only one case, where SPE
errors were small, and found to ilmprove the results.

5. eIt

The C,-independent version of PE showed no improvement over SPE in the
test problems.

6. High Angle PE

0f the three models presented, one (NORDA) did only Test Case 3, another
(SAI) had results only for Test Case 2, and the third (DREP) had inconsistent
results (possibly caused by implementation problems in a new program). General
conclusions cannot be drawn from this small sample, but individual cases suggest
that a high angle PE can be quite accurate for beamwidths as large as +40°. In
addition, the finite difference and finite element approaches allow interface
conditions to be accurately represented.

7. General Recommendations

a. There 1s a clear need for bench mark, reference solutions to a set of
range—dependent environment problems.

b. PE development will continue. Persistent evaluation of new (and
existing) models should be an integral part of that development.

70

T, WL P, ST 4 -y ——— i - R - T il i ES_..3 + =, A e fia ahusbte o dwmo AR L Cm e alem e A s fa am e o me e o a -




P

——
D

e e,

ACKNOWLEDGMENTS

Special thanks are due to R. Evans of Ocean Data Systems,
Incorporated, who provided support by aiding in the development
of the test cases and in helping to unravel and interpret certain
theoretical aspects of the PE programs. S. Chin-Bing and D. King
of NORDA aided in the test case development and were largely
responsible for ensuring that the mechanics of the workshop ran
smoothly.

We also would 1like to thank F. Jensen and W. Kuperman of
SACLANT ASW Regearch Centre for providing the reference calcula-
tiong, SNAP and FPP, that proved invaluable in the evaluation of
the test cases.

CDR K. E. Evans, modeling manager of the SEAS program, orig-
inated the idea for the workshop, and provided continucl support
and encouragement to bring the workshop to a successful conclu-
sion, and CDR M. A. McCallister, the successor to CDR K. E. Evans
as the SEAS modeling manager, continued to provide this support
after the workshop.

Finally, we would like to thank the workshop parvicipants,
whose time, effnrt, anl support ensured a successful workshop.

This work was performed under the Surveillance Environmental
Acoustic Support Project program element 63785N.




REFERENCES

1.

2,

3.

4,

5.
6.
7.

8.

l1.
12.

13.

14.

15,

16.

17.

18.

19.

20.

21.

C.W. Spofford, A Synopsis of the AESD Workshop on Acoustic-Propagation Model-
ing by Non-Ray Tracing Techniques, AESE TN-73-05, Ariington, Va., 1973.

R.H. Hardin and F. D. Tappert, Siam Rev. 15, 423, 1973.

F.D. Tappert, The Parabolic Approximation Method, in Wave Propagation and Un-
derwater Acoustics, Springer-Verlag, 1977.

M. leontovich and V. Fock, Zh. Eks. Teor. Fix. 16, 557-573, 1946, J. Phys. USSR
10, 13-24, 1946.

J.F. Claerbout, Geophy. 35, 407-418, 1970.

J.F. Claerbout, Fundamentals of Geophysical Data Processing, McGraw-Hill, 1976.

§.T. McDaniel, J. Acoust. Soc. Am. 58, 1178-1185, 1975.
S.T. McDaniel, J. Acoust. Soc. Am. 2, 307"311, 1975.
R.M. Fitzgetald, Je. Acoust. Soc. Am. '57, 839-842, 1975.

H.K. Brock, R.N. Buchal, and C.W. Spofford, J. Acoust. Soc. Am. 62, 543-552,
1977.

D.R. Palmer, J. Acoust. Soc. Am. 92, 343-354, 1976.
J.A. DeSanto, J. Acoust. Soc. Am. 62, 295-297, 1977.

J.A. DeSanto, J.S. Perkins, and R.N. Baer, J. Acoust. Soc. Am. 64, 1664~
1666, 1978.

H.K. Brock, The AESD Parabolic Equation Model, AESD TN-75-07, ONR, Arlington,
Va., 1975.

F.D. Tappert and R. H. Hardin, Proc. 8th Intern. Cong. on Acoustics, Gold-
crest, London, Vol. 2, 452, 1974.

R.N. Buchal and F.D. Tappert, A Variable Range 3tep in the Split-Step Fourier
Algorithm, AESD Tech. Memo, 1975.

F.R. DiNapoli and R.L. Deavenport, Numerical Models of Underwater Acoustic
Propagation, in Ocean Acoustics, Vol. 8 of Topics in Current Physics, Springer-
Verlag, 1979,

F. Jensen and H. Krol, The Use of the Parabolic Equation Method in Sound
Propagation Modeling, SACLANTCEN Memo. SM-72, La Spezia, Italy, 15 August
1975.

D. Lee and J.S. Papadakis, J. Acoust. Soc. Amer. 68, 1482-1488, 1980.

K.R. Kelly, R.W. Ward, S.Treitel and R.M. Alford, Geophysics 4l (1), 2-27,
1976.

H.M. Garon, J.S. Hanna, and P.V. Rost, J. Acoust. Soc. Am., 61 (S1), S124, 1977.

72



APPENDIX A: ABSTRACTS OF FORMAL PRESENTATIONS

*Alternative Data for PE Models”
David H. Wood

“Construction of a Bandlimited Javenumber Source"”
John S. Hanna

"Pulse Response of Propagation Channels near Caustics”
Lan Nghiem~Phu and Frederick D. Tappert

"Three-Dimensicnal Acoustic Propagation Using the Parabolic
Equation Mcdel”
J. S. Perkins, R. N. Baer, E. B. Wright, and R. D. Dicus

“Numerical Calculations of Bounds on Array Performance Using the

Parabolic-Equation Techanique
David R. Palmer and Marilyn L. Blodgett

"Prellmlnary Version nf a Finite-Difference PE Model"
Ding lee and George Botseas

“High Angle PE"
Robert E. Greene

“A Finite Element Method for the Parabolic Wave Equation”
Kenneth E. Gilbert

"A Finite~Difference Treatment of Interface Conditions”
Ding lee and Suzanne T. McDaniel

"A Hybrid Parabolic Equation Code”
H. Brock

“"Equivalent Bottom for Use with the Split-Step Parabolic Equatioan”
Homer Bucker

“"A High Frequency Ray Based Parabolic Equation™
Frederick D. Tappert

"lmpetance Formmulation of the Bottom Boundary Condition for the
Parabholic Equation Model i{n Uunderwater Acoustics”
John S. Papadakis

“PERUSE: A PE Code Including Rough Surface Scatteriag”
Lewis B. Dozier

“Propagation Modelfing with the Parabolic Equation”
F. B. J nsen and W. A. Kuperman

73

74

75

77

78

80

80

81

81

82

82

83

83

84

84



ALTERNATIVE OATA FOR PE MODELS

David H. Wood
Code 3342
Naval Underwater Systems Center
New London, CT 06320

The Parabolic equation is solved by numerical models that go forward
in range one step at a time using previously computed values. The very
first values, or initial data, must be provided to the model. By consider-
ing any initial data whatsoever after expansion as a weighted sum of norm-
al modes, we can immediately see what the solution of the PE would be if
the sound speed were not to depend on range. Matching this as well as we
can* to the normal mode sum that satisfies the Helmholtz equation, and
then extrapolating back to the initial range, we see that I0n(25)Pn(2) 18
the appropriate initial data. There are three deficiencies in the result-
ing approximation to the solution of the Helmholtz equation. The least
important is an amplitude error for each mode that results from approxima-
ting the square root of the horizontal wave number for each mode by a
single representative value*. More important {s that each mode by is given
a phase proportional to k(1-1/231n29n) instead of k cos O, (the hori-
zontal wave number of the nth mode). This 1is the so-called phase error
of the parabolic approximation and is small for small angles ©,. Most
lmportant is a bizarre difficulty concerning the effervescent modes of the
Helmholtz equation that decay rapidly with range because cos 8, is
essentlally pure Imaginary. For . hese same modes, 1-1/2 sin‘8, is essen-
tially pure real so that these modes propagate in the parabolic equation
without the desired exponential decay.

*Prof. Tappert pointed out during the presentation that the initial data
Pnlz,00n(2) cos ‘1/20n would give an improved match by eliminating ampli-
tude errors.
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CONSTRUCTION OF A BANDLIMITED WAVENUMBER SOURCE
FOR THE PARABOLIC EQUATION

John Hanna
Science Applications, Inc.
P. 0. Box 1303
McLean, VA 22102

All solutions to the Parabolic Equation (PE) require specification of
the initial pressure field as a function of depth (or wavenumber). It can
be shown that an appropriate specification of the initial field in verti-
cal wavenumber space for beamwidths of 30° or less is just

@(o,k) = constant for -kp, < k < ky,

0 otherwise,
where
kp = ko sinBy,

w/c,

&

8y, = desired source beamwidth.

However, since most numerical solutions to the PE uge FFT's, it is neces-
sary to replace this rectangular function with one which has essentlially
the same shape, bhut also acceptable transform properties. For the SAI PE
model, a low-pass finite-impulse digital filter was selected. At a given
frequency this filter is implemented with the appropriate number of points
to Insure that a beamwidth of at least kysinfy 1s achieved ia wave-
number space. The principal advantage of this source function over the
traditional Gausslan function is that {t minimizes the transform size
required for any desired beamwidth. (The difference in required transform
size for the digital filter versus the Gaussian is typically a factor of
four.)

If one constructs the ray theory equatioms for both the elliptic and
patabelic equations and looks for the equivalent ray trajectory determined
by each equation, the angle of a ray geoverned by the elliptic equation,
B, is related to the angle under the parabollc eguation, 99, by

sin 6, = fan Gp.

So, for example, the 90° ell{ptic equation ray {s equivalent to the 45°
parabolic equation ray. If a pressure field from the elliptic equation has
wavenumbers which correspond to sin & > 1, {f.e., kK > ko) the energy
corresponding to them Is exponentially damped cut as the fleld propagates.
However, under the parabolic equation, energy at these wavenuabers {s wot
damped out and the PE equivalent of elliptic rays for sin 8 > 1 will

75

o o < P AL NI S TP L, PR P AR N S PR S AP e de > -




propagate. Such energy creates unphysical artifacts in the PE field. To
insure against these artifacts, the digital filter wavenumber cutoff is
constrained to the following interval

kosin 8y < k < kg

which achieves the desired beamwidth and prevents the artifacts.

As the field from a source propagates with range it becomes redis-
tributed in depth and the influence of refraction and bathymetry 1is to
redistribute the energy in vertical wavenumber space. Again, because most
solutions to the PE are based on discrete Fourler transfo:us, the problem
being solved 1is 1implicitly periodic in depth and wavenumber. To {iasure
that alliasing does not occur in range as the energy redistributes in boci
depth and wavenumber, the low-pass filter is also used at each range step
to suppress the energy at high wavenumbers and greatest depths. This is
accomplished by simply multiplying the depth and wavenumber fields by the
filter response which maintains suitably limited depth and wavenumwber
fields.

Early portions of this work are contained in a talk entitled "Con-
struction of a New Source Function for the Parabolic Fquation Algorithm™
by H. M. Garomn, J. S. Hanna and P. V. Rost (J. Acoust. Soc. Am. 61 (51),
512(a), 1977).
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PULSE RESPONSE OF PROPAGATION THANNELS NEAR CAUSTICS

Lan Nghiem-Phu
Daubin Systems Corporation
104 Crandon Boulevard #3135

Key Biscayne, FL 33149

and

Frederick D. Tappert
University of Miami
RSMAS
4600 Rickenbacker (SVY)
Miami, FL 33149

A Pulsed Parabolic Equation (PPE) model has been developed for .l.e
purpose of analyzing the time-domain response of propagation channels for
coherent broadband sources. The method is based on multi-frequency PE runs
and Fourier transforms of the complex field amplitudes to yield the ana-
lytic signal in the time domain. The time domain signals are normaiized
such that transmission loss (re 1 yd) becomes a function of time and may
be resolved into separate arrivals. The relative phase 1is alsv obtained as
a function of time and is nearly stationary through the center of single
arrival.

A careful study of the accuracy of the PPE model has been carrvied out
in the time domain by comparison to ray trace calculation of arrival times
and transmission logses of single arrivals. In the neighborhood of caus-
tics for pairs oY arrivals, we have obtained some new results on the pulse
shapes.

A detailed study has been made for a range independent eaviroament
consisting of a bi-linear profile (iso-velocity ocean overlying a constant
gradient loss-lese bottom) and a dirvectional source having 200 Hz band-
width and 200 Hz carrier (100 Hz < f < 300 Hz). The nulse response was
examined at several ranges as a function of depth. In particular, at 15 ka
range, a three-arrival regilon {s obtained by ray theory with two bounding
caustics, outside of which there are single-arrival regions.

Pulse response amplitudes were compared to known exact seiviions
(spherical spreading) for the direct arrivals in the {so-veloclity reglon.
Aftar correcting for source beam pattern effacts, the PPE transmission
loss was found to be accurate to within 0.5 ¢B out to 1% km.

The accuracy of the PPE arrival times derived from phase {nformation
was found to depend socmevhat on the cholce of reference sound speed £
and also on the equivalent ray angie with respect to the herizontal. For a
poor cholce of C; and large angle (about 24°3, the error in travel tires
to a range of i5 km could be as much as 10 asec. However, (or an optimal
cholce of C, and for angles less than 18°, we found that the errvr f{a

travel times to the same range was reduced to less than 1 ssec.
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It was observed that the peak of the amplitude was not situated at
the geomelrical caustic location but was displaced towards the illuminated
slde. There was significant energy on the dark side which decreased expo-
nentially away from the geometric caustic boundary, and resulted in pulse
"spreading due to the effective low-pass filter caused by diffraction in
the shadow region. Complicated interference patterns developed as the
caustic was approached from the {illuminated side. Separated arrivals
merged together when thelr relative phases differed by an integral mul-
tiple of a cycle of the carrier frequency. For arrivals that have inter-
acted with the caustic, there was evidence of pulse deformation, resulting
in a tralling tail.

Similar studies are in progress for a complex environment with range
dependent profiles, complicated bathymetry, and range and depth dependent
horizontal currents.

THREE-DIMENSIONAL ACOUSTIC PROPAGATION
USINC THE PARABOLIC-EQUATION METHOD

J. S. Perkins, R. N. Baer, E. B. Wright, and R. L. Dicus
Code 5160
Naval Research Laboratory
Washington, DC 20375

We have extended the parabolic-equation method for acoustic propaga-
tion to three-dimensions. A split-step technique results in an algorithm
for marching the solution in range. We also present an approximation to
this full three-dimensional (3D) algorithm which we call the Nx2D method.
In this approach we solve N two-dimensional problems and combine the re-
sults to form an approximate three-dimensional solution. This technique
allows wave-front bending, which is the dominant mechanism for water-borne
propagation. '

We show In several examples how horizontal varlations in the ocean
environment affect the spatial distribution of energy and the distribution
of energy in azimuthal angle as seen by an array of hydrophones placed in
the calculated complex-valued acoustic field. In the first example we con-
sider a very strong linear cross-range gradient, designed to produce an
nbvious and predictable effect. Results from the Nx2D method are In excel-
lent agrcement with the results produced using the 3D algorithm. In anoth-
er example, we investigate propagation through a strong (but realistic)
ocecan eddy. The presence of the eddy between source and receiver causes a
change in the apparent snurce bearing of 0.5°. In this case the Nx2D moth-
od agaln proves to be an excellent approximation. In the final example, we
use the full 3D algorithm to simulate the performance of a bottom-mounted
array of hydrophones. The results suggest that reflection and diffraction
from bathymetric features may have a significant effect on the performance
of bottomed arrays.
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NUMERICAL CALCULATIONS OF BOUNDS ON ARRAY PERFORMANCE
USING THE PARABOLIC-EQUATION TECHNIQUE

David R. Palmer
National Oceanic and Atmospheric Administraton
Atlantic Oceanographic and Meteorological Labs
Ocean Acoustics Lab
4301 Rickenbacker Causeway
Miami, FL 33149

and

Marilyn L. Blodgett
Code 5120
Naval Research Laboratory
Washington, DC 20375

In order to evaluate the feasibility of proposed under—-sea surveil-
lance systems 1t 13 necessary to know the conditions under which the
effects of ocean variability, 1i.e., internal waves, on system performance
can be lignored. The standard approach to this question is tc measure or
calculate the mutual coherence function for the acoustic fileld since it
enters directly into the calculation of measuies of system perfcmmance
guch as array gain. Because of the great difficulties in determining, both
experimentally and theoretically, the mutual coherence function, we have
taken a differeit point of view. Rather than attempting to calculate,
e.g., array gain, we seek only to bound it. Consequently, we calculate a
limit on the degradation in system performance. The advantage of this
approach is that the 1limit depends only on the mean pressure field, a
quantity far easier to calculate than the nutual cohereance function. The
calculation of the mean field does require, however, the uge of a general-
ization of the Markov approximation appropriate when diffracting and
refracting effects ire prcsent. With this approximation the calculation of
the mean fleld can be carried out with a slightly modified version of the
parabolic equation technique of Tappert and Hardin. A case study is made
for propagation in the Western North Atlantic with the following results:
Independent of the length of a horizontal array, {ts gain will not be
reduced by more than 3 dB for propagation to 1 convergence zone at 260 Hz,
4 convergence zones at 130 Hz, and at least 15 ccnvergence zones at 50 Hz.
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PRELIMINARY VERSION OF A FINITE-DIFFERENCE PE MODEL

Ding Lee and George Botseas
Code 3342
Naval Underwater Systems Center
New Londom, CT 06320

A general purpose computer model which calculates propagation loss,
based on an imolicit finite-difference solution to the parabolic wave
equation, will soon be available. This model is designed to offer a number
of useful features: modifications are easy to incorporate; it is easy to
use; and reasonably accurate results can be obtained with reasonable
computational speed. In shallow or deep water propagation, the present
model 1is capable of handlirg multiple interfaces, irregular bottoms,
arbitrary bottom boundary conditions, and artificial bottoms. All test
results show excellent agreement with published results. This model was
used to solve a set of NORDA workshop problems. These results will be
discussed.

HIGH ANGLE PE

Robert R. Greene
Science Applications, Inc.
1710 Goodridge Dr.

P. 0. Box 1303
McLeaon, VA 22102

High Angle PE is a full-wave range dependent propagation model
gimilar in concent to PE. It is designed to handle the dual problem of
bottom-interac: o~ ind high angles of propagation up to about 45 degrees.
It is based upon an implicit tridiagonal range step and a cubic spline
discretization in the vertical coordinate.

The most Important observation about the method 1s that since it uses
a finite difference approach to the problem rather than the split-step al-
gorithm, a far better approximation to high angle propagation is used in
the form of a “rational parabolic” as opposed to "parabolic” approxima-
tion.

The method also allows an accurate treatment of strong gradients in
sound speed and discontinufties in sound speed and density. These are the
main difficulties for PE in modeling bottom interaction. Strong gradients
are not a limitation for a finite difference technique because the solu-
tion does not depend on splitting an operator into nearly commuting parts.
Discontinuities in sound spead and density are treated accurately by
matching cubic splines at the interfaces. The boundary conditions of the
wave equation are the natural matching conditions for the splines.

The major application of the method will be over regions where bottom
interactlon and range dependent bathymetry are driving the problem. Howev-
er, it can be used to model long-range propagation. It should be particu-
larly appropriate for continental slope and shallow water applications.

The work is curreatly being funded by ONR Code 486.
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A FINITE ELEMENT METHOD FOR THE PARABOLIC WAVEZ EQUATICON

Kenneth E. Gilbert
Code 320
Naval Ocean Research and Development Activity
NSTL Station, MS 39529

A semi-discrete elliptic wave equation is derived and used to develop
a parabolic equation which allows propagation angles of up to 40° with
respect to the horizontal. The derivation is based on the minimization of
a Lagranglan in which the vertical dependence of the acoustic fileld is
writter explicitly in terms of finite elements and the nodal values of the
pressure and vertical particle velocity. Since the resulting wave equation
is in terms of continuous field variables, discontinuities in sound speed
and density are easily handled.

A FINITE-DIFFERENCE TREATMENT OF INTERFACE CONDITIONS

Ding Lee
Code 3342
Naval Underwater Systems Center
New London, CT 06320

and

Suzanne T. McDaniel
Applied Research Laboratory
The Pennsylvania State University
University Park, PA 16802

A finite-difference approach 1s introduced to handle both horizontal
and J:iregular interface conditions. These Interface conditions are devel-
oped to preserve continuity of pressure as well as continulty of vertical
particle velocity. The formulation of interfaces is by means of a finite-
difference scheme in conjunction with the Taylor series expansion, while
the handling of the irregular interfaces is by line segmentation. The com-
plete mathematical development will be outlined. The validity of this
approach is clearly shown by the theory, however, test results will be
discussed as supporting evidence.
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A HYBRID PARABOLIC EQUATION CODE

H. Brock
Code 1721.2
Naval Research Laboratory
Waghington, DC 20375

The Tappert-Rardin split-step Fourier algorithm is an accurate and
efficient numerical technique for the solution of the parabolic wave
equation, particularly on a vector computer. Difficulties arise, however,
in simulating boundary conditions at interfaces. Disconcinuities introduce
complications, and the range step required is strongly dependeat on the
gradient of the index of refraction. Such boundary conditions can be
handled by finite difference techniques, although, in general, for a given
accuracy many more mesh points are required ia both dimensions. In addi-
tion, on a vector computer the techniques available for the solution of
the flnite difference equations tend to be less efficient than the split-
step algorithm. Since in many problems RSR propagation dominates over
substantial ranges, on a vector supercomputer it is feasible to combine
the split-step Fourier algorithm in RSR dominated regions with a finite
difference algorithm in regions where bottom interactions are important.
The resulting hybrid PE code changes both the parabolic approximation and
the solution technique used dynamically with range during the execution of
a glven problem.

EQUIVALENT BOTTOM FOR USE WITH THE
SPLIT-STEP PARABOLIC EQUATION ALGORITHM

Homer Bucker
Code 531
Naval Ocean Systems Center
San Diego, CA 92152

The split-step parabolic equation algorithms (SSPEA) have become the
standard Navy model for acoustic calculations in range dependent ocean
areas. This occurred because SSPEA 1s extremely simple, runs rather quick-
ly on a computer, and does a good job of modeling the refraction of sound
caused by changes of sgsound speed with depth and range. However, SSPEA has
problems when used in areas of strong bottom interaction. These are due to
density discontinuities at the ocean bottom, sediment rigidity which re-
sults in shear waves in bottom sediments, and sound scattering from ocean
bottom irregularities.

The equivalent bottom is a set of absorbing liquid layers that have
the same density as the bottom water and thickness equal to the vertical
sampling interval used in the SSPEA. The sound speed and density of each
layer is adjusted so that the equivalent bottom has the “correct™ bottom
reflection properties. That is, the equivalent bottom should have the same
plane wave reflection coefficlent as a function of grazing angle as the
actual ocean bottom. In addition, restrictions on the maximum change in
sound speed and attenuation between adjacent layers insures that range
steps in the SSPEA can be kept as large as possible. Also, insofar as
scattering effects can be incorporated Into the reflection coefficient,
they are automatically transferred to the sound level calculation.
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A HIGH FREQUENCY RAY BASED PARABOLIC EQUATION

Frederick D. Tappert
University of Miami
RSMAS
4600 Rickenbacker (SNY)-
Miami, FL 33149

No abstract was submitted for this presentation.

IMPEDANCE FORMULATION OF THE BOTTOM BOUNDARY CONDITION
FOR THE PARABOLIC EQUATION MODEL IN UNDERWATER ACOUSTICS

John 8. Papadakis
Department of Mathematics
University of Rhode Island

Kingston, RI 02881

In implementing impedance conditions &long the bottom interface for
the parabolic equation, it is assumed that the subbottom region ie homo-
geneous, semi-infinite and the field satisfies a radiation condition at

Zm 0,

The derived impedance 18 a condition on the total parabolir fleld
p(r,zg), and in the form of an integral equation along the bottom inter-
face z=2g

r k

2 i (ag? = D(r - s)
PR

ALK U T e (r-9)% p,(s,zg)ds

(6]

0

wvhere Pg/p are the densities 1in the bottom/water, ng!f/co and ng ls
the index of refraccion in the bottonm.

The integral equation i35 approximated by a finite eum and 1is incor-
porated in an implicit finite difference algorithm for the parabolic
equation. The resulting model advances the parabolic field only in the
water column and does not require the introduction of an artificial sub~
bottom layer.

Research {8 in progress on models with sloping bottom interfaces as
well as elastic subbottom effects.
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PERUSE: A PE CODE INCLUDING ROUGH SURFACE SCATTERING

Lewis B. Dozier
Science Applications, Inc.
1710 Goedridge Dr.

P. 0. Box 1303
McLean, VA 22102

A new model has recently been developed which treats rough surface
scattering in the context of PE. The surface is assumed to be plecewise
linear and frozen in time. A sequence of conformal mappings locally flat-
tens each linear surface segment, whereupon the split-step Fourier algo-
rithm can advance the solution for one step in each transformed space.

Numerical PERUSE (PE Rough Surface) results for surface ducts are
analyzed by resolving them in depth into Labianca's virtual modes (“mode-
matching”). The resulting modal intensities are then plotted as & function
of range, and decay rates are estimated for each mode. Comparison with
simple Rayleigh theory shows no obvious correlation. A fullwave coupled

mode model 18 currently being investigated to explain the PERUSE results.

PROPAGATION MODELING WITH THE PARABOLIC EQUATION

F. B, Jengen and W. A. Kuperman
SACLANT ASW Research Centre
La Spezia, Italy

A series of basic propagation problems are solved using the parabolic
equation. First we show results of some mode coupling studiesl»2 com-
prising propagation iu & wedge-shaped ocean (up-slope and down-slope) and
propagation in a shallow-water channel with an abrupt profile change.
Then we apply the PE model to study Lloyd-mirror patiterns. These results
are interesting since we here obtain field plots that explicitly show the
effect of the small-angle approximation inherent in the PE technique. In
this connection we alsu study the diffraction of Lloyd-mirror beams over
the top of a wedge. Finally, we demonstrate the application of PE theory
to modeling scund propagation over a seamount. Here, theory is compared
with broad band experimental data.

1. F. B. Jensen and W. A. Kuperman, “Sound propagation in a wedge-shaped
ocean with a penetrable bottom,” J. Acoust. Soc. Am. 67, 1564-1566 (1980).

2. P. B. Jensen and W. A. Kuperman, "Range-dependent bottom-limited propa-
gation modeling with the parabolic equativn”, in Bottom-Interacting Ocean
Acoustics, edited by W. A. Kuperman and F. B. Jensen (Plenum Press, New
York, 1980) pp. 451-466.
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APPENDIX B. PE PROGRAM ABSTRACTS

BTL:
DREP:
NORDA:
NOsC:
NRL-1:
NRL-2/3:
NUSC-1:
NUSC-2:
‘SACLANT:

SAI-1:

SAI-2:
URI:
SNAP:

FFP:

J. D. Seals

D. J. Thomson

K. E. Gilbert

D. Gordon

J. 8. Perkias and R. N. Baer
H. Brock

D. Lee and G. Botseas

David H. Wood

F. B. Jensen and H. R. Krol

C. Spofford, L. Dozier, H. Garon
and R. Stieglitz

Robert R. Greene
John S. Papadakis
F. B. Jensen and M. C. Ferla

H. W. Kutschale
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BTL
ARRAY PROCESSOR PE

J. D. Seals
Bell Telephone Laboratory
Whippany Road
Whippany, NJ 07981

The BTL version of the parabolic code (APPE) was developed to provide
production runs with turnaround times on the order of minutes rather than
hours. This was achieved by careful implementation of the code on an AP-
190L array processor Interfaced to an UNIVAC 1108 host. The full potential
of the array processor was realized only by wholly implementing the P.E.
approximation and step size algorithm 1in the array processor. While the
array processor propagates the code forward one or wore steps, the host
sets up physical input for the next step(s). When the array processor
finishes the propagation, a minimal I/0 exchange occurs and the process
repeats until completion. A pre-cursor routine looks ahead to warn of
ma jor changes 1in physical properties so that step reductlon occurs before
rather than after the fact.

Additional features of the BTL code include both linear and triangu-
lar sectors interpolation of v-locity profiles, range dependent Q‘1 and
bottom sound speed gradients, pseudo discontinuities at the water/sediment
{nterface, mixed data units, full diagnostic capabilities, data checking,
linear and exponential averaging of TL data, and extensive graphie
capabilities.

Although the curreant version of the code was developed for produc-

tion, its highly modular and struccured format provides an excellent base
for future program study and development.
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DREP
A FINITE-DIFFERENCE PE MODEL

D. J. Thomson
Defence Research Establishment Pacific
FM0 Victoria, B. C.
CANADA VOS 1BO

A finite-difference scheme (hastily ianvoked for the NORDA workshop)
is described for the so-called heterogeneous formulation! of the para-
bolic equation, which allows for spatial variation in the material prop-
erties. The sound-speed, density and absorption may be specified at each
grid point of a finite-difference mesh, and the (internal) boundary con-
ditions are everywhere satisfied implicitely. Discontinuities in material
properties can be accommodated. The Crank-Nicolson algorithm 1s used to
march out the numerical solution to the parabolic equation. A source
function, designed to be band-limited in vertical wavenumber, is used to
begin the solution process. Promising features cf this approach include
the ability to treat parabolic equations with variable coefficients, the
use of non-uniform step sizes in depth, and the possibility of adspting
recently developed absorbing boundary conditions? to 1limit the vertical
extent of the computational grid. While not thoroughly tested (or even
possibly debugged), the new code was applied to each of the suggested test
problems.

g, Rr. Kelly, R. W. Ward, S. Treitel, and R. M, Alford. Geophysics, Vol.
41(1), pp. 2-27, (1976).

R, wW. Clayton and B. Engquist. Geophysics, Vol. 45(5), pp. 895-904,
(1980).

NORDA
A FINITE ELEMENT HIGH ANGLE PE

K. E. Gilbert
Code 320
Maval Ocean Research and Development Activity
NSTL Station, MS 39529

The NORDA program solves the wave equation in Clessrbout's rational
linear approximation, {.e. a high-angle parabholic equat_on. The discrete
representatlien {s based on the mini{mization of a Lagrangian in which the
vertical dependence cf the acoustic fleld {s written explicitly {n terums
of finite elements and the nodal values of the pressure and vertical par-
tlicle velocity. Since the resulting wave equation {s in terms of continu-
vis fleld wvartables, discontinuities In sound speed, attenuatfon and
density are easily handled. This program presently trests only range {nde-
pendent environments. A normal wmode solution 1s used for the ({nitfal
field, and the radfation condition at the bhottom {s approximated by a
“"false"” bottom. The program 1{s implexented on the NORDA Cyber 171
computer.
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NOSC

PARABOLIC EQUATION COMPUTER PROGRAM

D. Gordon
Naval Ocean Systems Center
San Diego, CA 92152

This underwater acoustic propagation loss program ! s a split-step
parabolic equation algorithm using an FFT with no correcttons or extean-
gsions. It is designed to be started froz a normal mode field input at any
desired range. Sound speed profiles are normally entered as linear layers
in 1/C2. A constant attenuation can be added to any layer. The attenua-
ating layer has a large value of attenuation at the bottom of the attenu-
ating layer, anrd decays exponentially in dB/Ar upwards so that attenuation
i1s negligible at the top of the attenuating layer and above it. The oper-
ator specifies a4z, Ar, and C,. Outputs are printouts, storage on cards
or files, and plots.
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NRL-1

THE NRL PARABOLIC EQUATION PROGRAM PACKAGE FOR ACOUSTIC PROPAGATION

John S. Perkins and Ralph N. Baer
Naval Research Laboratory
Washington, DC 20375

We solve the parabolic equation using the split-step technique. The
program makes full use of the vectorizing and pipelining capabilities of
the Texas Instruments Advanced Scientific Computer (ASC) at NRL. It is
available to the Navy scientific community through the Navy Laboratory
Computer Network (NALCON). In our implementation we have included the op-
tion to partially correct for the parabolic approximations [J. A. DeSanto,
J. S. Perkins, and R. N. Baer, J. Acoust. Soc. Am. 64, 1664-1666 (1978)].

In order to begin the range-stepping algorithm, two preliminary pro-
arams are used to specify the enviromment and generate an initial pressure
field. The first program reads environmental data, interpolates sound-
speed profiles, writes the bathymetry and a list of profiles on a flle,
and draws a profile/bathymetry plot and a sound-speed contour. The second
program writes a file containing the initisl pressure fiteld. The user can
choogse from three alternatives: (1) a normal mode calculation, (2) a func-
tional form which is Gaussian {n depth, or (3) supply a complex FORTRAN
function which will override the Gaussian. A plot of the initial field is
also generated.

In the maln range-stepping program, the sound speed in the bhottom {is
constant in depth, but can vary with range. An option allows the bottom
sound speed to vary so that a constant critical angle is maintained. Below
the water/bottom {nterface, the square of the index of refraction {s given
an exronentially {increasing Imaginary part which effectivaely produces an
absorbing boundary at the bottom of the transform regfon.

The direct outputs of the =ain program are a listing and plot of
transmission loss versus range for selected depths (the {1tensities can bde
smoothed with a Gaussian average prior to coaverting r- transmission
logs), and a solution file. Otner plots are avallable through auxiliary
plotting programs which read the solution file: (1) additional transmis-
ston loss versus range plots, (2) transmission loss versus depth plots,
{3) histograms of trausmission loss values {n a speclfied range-depth
region, »nd (4) gray-scale contour plots of inteasity as a functlon of
range and depth.

It {s also possible to simulate the performance of a tilted arrsy ¢
hydrophones In the calculated pressure flield. This is done {n an auxiltaiy
program which provides elither gray-scale or {sozetric plots of intensity
as a function »f arcival angle and range from the source, and estimates of
array signal galn and 3 dB width.
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NRL-2 AND NRL-3

VECTORIZED PE PROGRAMS

H. Brock
Naval Research Laboratory
Washington, DC 20375

The current PE program implements the solutfon of two different
parabolic approximations. The “standard” (Leontovich-Fock) parabolic
approximation (NRL-2) is solved using the Tappert-Hardin split-step
Fourier algorithm. The second approximation, Tappert's Co independent
equation (NRL-3) 1is solved with a finite difference algorithm that
attempts to match interface conditions at boundaries. The finite differ-
ence algorithm {s currently under development, and a umber of problems
have not been solved. The code makes use of the TI ASC vector hardware
with explicit in-line generation of vector lnstructions and, hence, is not
readily transportable to other machines.

The split-step code 1s basically a vectorized version of the program
described in NORDA Technical Note 12, The AESD Parabolic Equation Model,
with the following modifications and additions:

1. Data structures have been mod{fied for more efficient
vectorization.

2. The sine transforms of the real and imiginary parts of the field
are performed in parallei to reduce overhead and generate longer vectors.
The fast Feourier transform algorithm {s a vector version that eliminates
the bit reversal permutation sequence that s necessary in most scalar
{mplementations.

J. Two source functions are available--a Gaussian »r the filter
function developed by SA1 (Garon, Hanna and Rost).

4. The pscudo radfatfon condition boundarv {s f{mposed *v usiag a low
pass digital fflter to attenuate the last quarter of the transtora grid.

5. Triangular sector sound speed (nterpolatfon {s used.

6. Two rvange step sire estizmates are aade each step. In physfcal
space the range 3tep size estimate {5 basel on the ahgolute value of the
lead{ng crror tern (third order {n range step) resulting {rom the assuop-
tion that the exponertial operators commute. In Fourier space 4 tange step
esticate (s derfved from the range inrerfereace lenglh <urresponding to
the hLignest vertfcal =venumber component 30 dB belos the spectral peak.
{The Fourler space estimate was derived by H. Garon of 3Al.) The code
selects the minisum of the two step size estimates.
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NUSC-1

NUSC IFD* PE MODEL
*Implicit Finite-Difference
D. Lee and G. Botseas
Naval Underwater Systems Center
New London, CT 06320
A PE propagation loss model

parabolic wave equation is solved by an IFD scheme

The c.de treats the propagation problem as an IBVP (Initial Boundary
Value Problem)

Sound speed profile can be supplied in user's format

Some bottom boundary conditiomns are built-in (sloping bottom case)
User's bottom boundary conditions are acceptable

Automatic handling of horizoatal interfaces

FORTRAN (NUSC VAX1ll computer)

The workshop test problems were solved by this model using a Gaussian
starter and the artificial bottom technique.
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NUSC-2

THE SNAPE NORMAL MODE MODEL FOR THE PARABOLIC EQUATION

David H. Wood
Naval Underwater Systems Center
New London, CT 06320

A normal mode computer model for predicting how sound travels in the
ocean generates solutious of the Helmholtz equation. Such models can be
casily modified to instead solve the Parabolic equation by changing a few
lines of instructions. Such a modified normal mode model 18 useful for
validation of other Parabolic equation models based on other, more gener-
ally applicable, numerical techniques. This eliminates two difficulties
usually encountered in such validation: the Helmholtz equation has a dif-
ferent solution than the Parabolic equation, and the latter 1is sensitive
to a pavameter that does not even enter into normal mode computations. A
normal wode model can be further modffled tc use any desired starting
values, which eliminates another source of variation in the outputs of
Parabolic equation models. Roughly speaking, one amerely replaces the
functions Ho(l) (k r cos B,) that express the rarge dependence of
each term of the notral mode sum in terms of the horizontal wave numbet
k cos ©,. These functions are replaced by the fumctions exp -1(1/2)
kor(i-sinzan). As an example the SNAP model (SACLANTCEN Normal-
Mode Propagation model) of Fian B. Jenser and M. C. Ferla based on the
work of A. V. Newman and F. Ingenito was modified by Susan M. Bates of
Sclence Consultants Incorporated of Newport, &.I., and renamed SNAPE.
Numerical results for some PE workshop problems have been generated for
both Gaussian initial data and mocde-sum initial data. These examples and
further details are given in NUSC T™ No. 811080.
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SACLANT
PAREQ

F. B. Jensen and H. R. Krol
SACLANT ASW Research Centre
LaSpezia, Italy

PAREQ(I’Z) is a parabolic equation model; the computer program used
in this study is a modified version of the one developed by AEsp(3),
This model not only handles a variable profile in depth and range but also
allows the bottom depth and bottom structure to vary In range. The bottom
18 characterized by a compressional speed profile, density (the density
discontinuity is smoothed using a hyperbolic tangent function as suggested
in Ref. 1) and attenuation which is included by using a complex sound
speed. The second layer of the bottom has constant acoustic propertias.
There are two options for the initial fieid: Gaussian source or normal
modes. This model is not only resident on a UNIVAC 1106 but also ruas oa -
an HI' 21IMX coaputer.

l. Tappert, F. D. The parabolic approximation method. In: Kelle-, J. B.
and Papadakis, J. S. eds Wave Propagation and Undcerwater Acoustics. Lec-
tere Notes in Physics ;0. New York, Springer-terlag, 1977: 224-287.

2, Jeacen, F. B. and Krol, H. R. The uge of the parabolic equatiun method
in sound propagation modeling, SACLANTCEN SM-72. la Spezia, Italy, SAC-
LANT ASW Research Centre, 1975.

3. Brock, H. K. The AESD parabolic =quation model, NORDA TN-12. NSTL
Station, Miss., Naval Ocesn Raserch and Development Activity, 1978.
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SAI-1

SAI PE

C. Spofford, L. Dozier, H. Garon, and R. Stieglitz
Science Applications, Inc.
1710 Goodridge Dr.
P. 0. Box 1303
McLean, VA 22102

SAI PE is based on the original AESD PE version written by Harvey
Brock. Changes in the original version implemcnted in SAI's PE:

1) A new source functlon. The original Gaussian beam source function
left too muck energy traveling at steep angles and not enough energy trav-—
~l_ag at lower angles at the source. The new PE source function is an im-
pulse response in physical space (approximately a sinx/x) which trangforus
to 4 filter function in vertical wave number spiace. This filter function
is very close to the wave number spectrum of a limited aperture point
source with most of the energy evenly distributed over the low wave
numbers and a roll-off in the higher wave numbers to prevent aliasing.

2) A new range step calculation. This feature of SAl's PE was ifastal-
led to save computer time. Basically PE now calculates the maximum Aangle
of energy propagation and then de:ermines the interference length (hori-
{zontal) between energy tra,eling at this angle and energy traveling
horizontally. This interference length is the new range step. This algo-
rithm avoids the necessity of calculating the third order truncation error
term (which is too time consuming on our noun-vectorizing machine) and pro-
vides the same results.

3) CMOD. CMOD is a transform of the environment, both the souand speed
profiles and the inpt and output depths, in order to reduce the parabolic
phase velocity ervor.

4) Bottom options. SAl PE regular allows the user to sgpecify efther a
sound speed profile and attenvation funcrtion in a sediment layer or a
transamission loss versus grazing angle curve.
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SAI-2

——————

HIGH ANGLE PE

Robert R. Greene
Scieace Applications, Inc.
1710 Goodridge Dr.

P. 0. Box 1303
McLean, VA 22102

High Angle PE {8 a full-wave range dependent propagation model
similar in concept to PE. It is designed to handle the dual problem of
bottom-interaction and high angles of propagation up to about 45 degree .
It is based upon an implicit tridiagonal range step and a cubic spline
-discretization in the vertical coordinate.

The moast important observation about the method is that since it uses
a finite difference approach to the problem rather than the split-step al-
gorithm, a far better approximation to high angle propagation is used in
the form of a "rational parabolic" as opposed to “parabolic” approxima-
ation.

The method also allows an accurate treatment of strong gradients in
sc'md speed and discontinuities in sound speed and density. These are the
m.in difficulties for PE in modeling bottom interaction. Strong gradients
are not a limitation for a finite difference techuique because the solu-
tion does not depend on splitting an operator into nearly coamuting parts.
Discouutinuities in sound speed and density are treated accurately by
matching cubic splines at the interfaces. The boundary conditions of the
wave equation are the natural matching conditious for the splines.

The major application of the method will be over regions where bottom
interaction and range dependent bathymetry are driving the problem. lowev-
er, it can be used to model long-range propagation. It should be particu-
larly appropriate for continental slope and shallow water applications.

The work is currently being funded by ONR Code 486.
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IMPEDANCE + IFD COMPUTER MODEL

John S. Papadakis
Dept. Math. University of Rhode Island
Kingston, RI 02881

Test problems 1-4 were run using an experimental computer model,
consisting of the 1implicit finite-difference model presently undet
development by D. Lee and G. Botseas NUSC, New London Lab. into which an
"impedance” subroutine has been incorporated. 1: should be pointed out
that the above IMPEDANCE+IFD computer model is i1 the experimental stage
and under continuous evolution.

The impedance subroutine calculates the field at the advanced range
along the bottom interface via a weighted sum of its normal derivative
along the interface from range zero to the present range. This eliminates
the need of introducing an artificial bottom in the IFD model, and the
field is advanced only in the water column. The impedance subroutine can
trace the field along horizontal bottom boundaries as well as sloping
bot toas.

ADVANTAGES of the {mpedance approach versus introduction of an
absorbing layer and a false bottom: (1) Problems because of jump discon-
tinuities along the bottom interface of density and sound speed are elim-
fnated since the domain of interest terminates at the real bottom. (2) The
question of how deep the false bottom should be placed is also eliminated.
(3) The number of mesh points in the z-direction i3 much smaller (in many
cases half, since often, in the false bottom approach the water depth is
doubled). (4) The computer time {3 substantially improved since, by (a)
above a larger range step-size can be used, and by (b) the aumber of
z-mesh points 1{s smaller.

DISADVANTAGES: (1) If the whole weighted sum is used then a larger
storage space 1s needed. However, in most appiications because of the size
of the weights, the sum i{s truncated and a coastant number of tems is
used throughout the coaputation. (2) Because of the use of a sum, when the
intensity 1{s very small along the bottom boundary, numerical noise is
{ntroduced. This cuan bde seen in Test-Problem 1. Actually, the same disad-
vantage exists in the split-step, namely; since every point in the advan-
cal range 13 calculated via a weighted sum oi the field at the preseant
range, {f the {ntensity 1s down to a few stignificant figures numerical
nofse will be introduced. This problem docs not appear in finite differ-
ence approach since a point at the advanced range i1s given in teras of unot
all the poiats in the present range as {n the split-step but in terms of
only three points. In other words the ifampedance as well as the split-step
being approximations of integral operators are global o erators with the
above d{sadvantage where the finite difference being an approximation of a
differential operatotr {s a local operator.
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SNAP
SACLANTCEN NORMAL-MODE ACOUSTIC PROPAGATION MODEL

F. B. Jensen and M. C. Ferla
SACLANT ASW Research Centre
La Spezia, Italy

SNAP (1) 1s a normal-mode model based on a program originally de-
veloped at the U.S. Naval Research Laboratory (2, 3); this program solves
the eigenvalue problem by direct numerical integration of the depth depen-
dent equation. Computation time for some of the key subroutines has been
reduced and the program has been restructured to run interactively on a
UNIVAC EXEC 8 system. The model allows for slight range dependence by
employing the adiabatic approximation. SNAP was originally designed for a
shallow water environment but a version now exists which handles high-
frequency deep-water situations. Environmental inputs are: arbitrary ve-
locity profile as function of depth (multiple profiles for range-dependent
adiabatic computations) in the water column, density, attenuation and
compressional velocity profile of sediment layer and density, shear and
compressional velocity and shear and compressional attenuation of the
basement. At present, the existing output options are: loss ve. range,
loss vs. depth, depth-averaged loss vs. range, depth-averaged loss vs.
frequency, countoured loss vs. depth and range, contoured loss vs. fre-
quency and range, contoured depth-averaged loss vs. frequency and range,
modal group velocity vs. frequency, modal phase velocity vs. frequency,
mode function va. depth, phase of field vs. depth, intensity of field vs.
arrival angle, and sound speed vs. depth. The model has been compared with
other models (4) and has been tested against various data sets (5).

l. Jeasen, F. B. and Ferla, M. C. SNAP: the SACLANTCEN normal-mnde
acoustic propagation model, SACLANTCEN SM-121. la 3pezia, Italy, SACLANT
ASW Research Centre, 1979 (AD A 067256).

2. Miller, J. ¥. and Ingenito, F. Normal mode FORTRAN programs for cal-
culating sound propagation in the ocean, NRL Memorandum Rpt 3071, Washing-
ton, D.C., U.S. Naval Research Laboratory, 1975.

3. Ingenito, F., Ferris, R., Kupetrman, W. A. and Wolf, S$.N. Shallow water
acoustics, summary report (first phase), NRL Rpt 8179, Washington D.C.,
U.S. Naval Research Laboratary, 1978.

4. Jensen, F. B. and Kupermau, W. A. B ¢-'srnlal acoustical modeling at
SACLANTCEN, SACLANTCEN SR-34, La Spezia, Italy, SACLANT ASW Research Cen-
tre, 1979 (AD A 081 853).

5. Ferla, M. C., Dreini, G., Jersen, F. B. and Kuperman, W. A. Broadband
model/data comparisons for scoustic propagation in coastal waters. In: Ku-
perman, W. A. and Jensen, F. B. eds. Bottou-Interacting Ocean Acoustics.
Rew York, Plenun Press, 1980. -
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FAST FIELD PROGRAM

H. W. Kutschale
Columbia University
Palisades, NY

FFP (1, 2) is a complete numerical solution of the range independent
wave equation and hence fncludes the continuous part of the spectrum and
the near fileld (distances greater than a wavelength). The model used in
this study was developed at Columbia University (2). The model includes
propagation of both compressional and shear waves and is therefore also
suitable for seismic studies. In the original version, the depth dependent
part of the wave equation was solved using the Thompson-Haskell matrix
method where the water column is divided into {sovelocity layers. An
updated version (3) allows constant gradient in k2 (equivalent to 1/c2
constant gradient) and therefore employs Airy functions in the Thompson-
Hagskell matrices instead of trigonometric functions. The inputs are the
same as that of the normal-mode model (SNAP). There are two possible out-
puts: there is the "integrand” plot, which is essentially a plot of energy
vs. wavenumber and it therefore has maxima corresponding to the normal-
mode eigeuvalues in the discrete part of the spectrum. The maxima in the
continuous portion of the sgpectrum correspond to the so-called “virtual
modes.” The second output is loss vs. range; it should be noted that the
preesent program requires a complete new run for a change of suurce or re-
ceiver depth. Hence, loss contours over range and depth are not practical
as compared to nermal wode or PE methods.

1. DiNapoll, F. R. Fast field program for multilayered media, NUSC Rept.
4103. New london, Conn., Naval Underwater Systems Center, 1971.

2. Kutschale, H. W. Rapid computation by wave theory of propagation loss
in the Arctic Ocean, Rept. CU-8-73. Palisades, N.Y., Columbia University,
1973.

3. Kutschale, H. W. Uanpublished communication.
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